Cargando…

Clinical Implications of Monitoring ESR1 Mutations by Circulating Tumor DNA in Estrogen Receptor Positive Metastatic Breast Cancer: A Pilot Study

BACKGROUND: ESR1 mutations are frequently detected in ER+ MBC, and have been reported to be associated with endocrine therapy resistance. However, there are little researches to validate whether dynamic monitoring of ESR1 mutations could serve as a predictive plasma biomarker of acquired resistance...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xuelu, Lu, Jiawei, Zhang, Lanxin, Luo, Yaoting, Zhao, Zuowei, Li, Man
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Neoplasia Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6931202/
https://www.ncbi.nlm.nih.gov/pubmed/31877464
http://dx.doi.org/10.1016/j.tranon.2019.11.007
Descripción
Sumario:BACKGROUND: ESR1 mutations are frequently detected in ER+ MBC, and have been reported to be associated with endocrine therapy resistance. However, there are little researches to validate whether dynamic monitoring of ESR1 mutations could serve as a predictive plasma biomarker of acquired resistance to endocrine therapy. Therefore, in this study, we performed longitudinal circulating tumor DNA (ctDNA) detection to evaluate the clinical implications of monitoring ESR1 mutations. METHODS: We performed longitudinal dynamic mutation analyses of plasma samples from 45 patients with metastatic breast cancer (MBC) and sequencing paired biopsy tissues, using a targeted NGS panel of 425 genes. These patients were treated at the Second Affiliated Hospital of Dalian Medical University between January 2017 and February 2019 with written informed consent. RESULTS: Mutations profiles were highly concordant between plasma and paired tissue samples from 45 MBC patients (r = 0.96, P < 0.0001). ESR1 mutations were enriched in ER+ MBC patients after AI therapy (17.8%, 8/45). The median time from AI endocrine therapies to the initial detection of ESR1 mutation was 39 months (95% CI 21.32–57.57). Some hotspot mutations (Y537S (n = 5), Y537N (n = 1), D538G (n = 2), E380Q (n = 2)) and several rare mutations (L345SfsX7, 24fs, G344delinsGC) were identified in our cohort. In addition, we observed that two patients obtained multiple ESR1 mutations over the course of treatment (Y537N/Y537S/D538G, L345SfsX7/24fs/E380Q). Through dynamically monitoring ESR1 mutations by ctDNA, we demonstrated that the change of allele frequency of ESR1 mutations was an important biomarker, which could predict endocrine resistance of ER+ MBC in our study. We also observed that the combination of everolimus in four cases with acquired ESR1 mutations showed longer PFS than other therapies without everolimus. CONCLUSION: The dynamic monitoring of ESR1 mutations by ctDNA is a promising tool to predict endocrine therapy resistance in ER+ MBC patients.