Cargando…
Adjusting Interfacial Chemistry and Electronic Properties of Photovoltaics Based on a Highly Pure Sb(2)S(3) Absorber by Atomic Layer Deposition
[Image: see text] The combination of oxide and heavier chalcogenide layers in thin film photovoltaics suffers limitations associated with oxygen incorporation and sulfur deficiency in the chalcogenide layer or with a chemical incompatibility which results in dewetting issues and defect states at the...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6931240/ https://www.ncbi.nlm.nih.gov/pubmed/31894204 http://dx.doi.org/10.1021/acsaem.9b01721 |
_version_ | 1783483055397142528 |
---|---|
author | Büttner, Pascal Scheler, Florian Pointer, Craig Döhler, Dirk Barr, Maïssa K. S. Koroleva, Aleksandra Pankin, Dmitrii Hatada, Ruriko Flege, Stefan Manshina, Alina Young, Elizabeth R. Mínguez-Bacho, Ignacio Bachmann, Julien |
author_facet | Büttner, Pascal Scheler, Florian Pointer, Craig Döhler, Dirk Barr, Maïssa K. S. Koroleva, Aleksandra Pankin, Dmitrii Hatada, Ruriko Flege, Stefan Manshina, Alina Young, Elizabeth R. Mínguez-Bacho, Ignacio Bachmann, Julien |
author_sort | Büttner, Pascal |
collection | PubMed |
description | [Image: see text] The combination of oxide and heavier chalcogenide layers in thin film photovoltaics suffers limitations associated with oxygen incorporation and sulfur deficiency in the chalcogenide layer or with a chemical incompatibility which results in dewetting issues and defect states at the interface. Here, we establish atomic layer deposition (ALD) as a tool to overcome these limitations. ALD allows one to obtain highly pure Sb(2)S(3) light absorber layers, and we exploit this technique to generate an additional interfacial layer consisting of 1.5 nm ZnS. This ultrathin layer simultaneously resolves dewetting and passivates defect states at the interface. We demonstrate via transient absorption spectroscopy that interfacial electron recombination is one order of magnitude slower at the ZnS-engineered interface than hole recombination at the Sb(2)S(3)/P3HT interface. The comparison of solar cells with and without oxide incorporation in Sb(2)S(3), with and without the ultrathin ZnS interlayer, and with systematically varied Sb(2)S(3) thickness provides a complete picture of the physical processes at work in the devices. |
format | Online Article Text |
id | pubmed-6931240 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-69312402019-12-30 Adjusting Interfacial Chemistry and Electronic Properties of Photovoltaics Based on a Highly Pure Sb(2)S(3) Absorber by Atomic Layer Deposition Büttner, Pascal Scheler, Florian Pointer, Craig Döhler, Dirk Barr, Maïssa K. S. Koroleva, Aleksandra Pankin, Dmitrii Hatada, Ruriko Flege, Stefan Manshina, Alina Young, Elizabeth R. Mínguez-Bacho, Ignacio Bachmann, Julien ACS Appl Energy Mater [Image: see text] The combination of oxide and heavier chalcogenide layers in thin film photovoltaics suffers limitations associated with oxygen incorporation and sulfur deficiency in the chalcogenide layer or with a chemical incompatibility which results in dewetting issues and defect states at the interface. Here, we establish atomic layer deposition (ALD) as a tool to overcome these limitations. ALD allows one to obtain highly pure Sb(2)S(3) light absorber layers, and we exploit this technique to generate an additional interfacial layer consisting of 1.5 nm ZnS. This ultrathin layer simultaneously resolves dewetting and passivates defect states at the interface. We demonstrate via transient absorption spectroscopy that interfacial electron recombination is one order of magnitude slower at the ZnS-engineered interface than hole recombination at the Sb(2)S(3)/P3HT interface. The comparison of solar cells with and without oxide incorporation in Sb(2)S(3), with and without the ultrathin ZnS interlayer, and with systematically varied Sb(2)S(3) thickness provides a complete picture of the physical processes at work in the devices. American Chemical Society 2019-12-10 2019-12-23 /pmc/articles/PMC6931240/ /pubmed/31894204 http://dx.doi.org/10.1021/acsaem.9b01721 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Büttner, Pascal Scheler, Florian Pointer, Craig Döhler, Dirk Barr, Maïssa K. S. Koroleva, Aleksandra Pankin, Dmitrii Hatada, Ruriko Flege, Stefan Manshina, Alina Young, Elizabeth R. Mínguez-Bacho, Ignacio Bachmann, Julien Adjusting Interfacial Chemistry and Electronic Properties of Photovoltaics Based on a Highly Pure Sb(2)S(3) Absorber by Atomic Layer Deposition |
title | Adjusting Interfacial
Chemistry and Electronic Properties of Photovoltaics Based on a Highly
Pure Sb(2)S(3) Absorber by Atomic Layer Deposition |
title_full | Adjusting Interfacial
Chemistry and Electronic Properties of Photovoltaics Based on a Highly
Pure Sb(2)S(3) Absorber by Atomic Layer Deposition |
title_fullStr | Adjusting Interfacial
Chemistry and Electronic Properties of Photovoltaics Based on a Highly
Pure Sb(2)S(3) Absorber by Atomic Layer Deposition |
title_full_unstemmed | Adjusting Interfacial
Chemistry and Electronic Properties of Photovoltaics Based on a Highly
Pure Sb(2)S(3) Absorber by Atomic Layer Deposition |
title_short | Adjusting Interfacial
Chemistry and Electronic Properties of Photovoltaics Based on a Highly
Pure Sb(2)S(3) Absorber by Atomic Layer Deposition |
title_sort | adjusting interfacial
chemistry and electronic properties of photovoltaics based on a highly
pure sb(2)s(3) absorber by atomic layer deposition |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6931240/ https://www.ncbi.nlm.nih.gov/pubmed/31894204 http://dx.doi.org/10.1021/acsaem.9b01721 |
work_keys_str_mv | AT buttnerpascal adjustinginterfacialchemistryandelectronicpropertiesofphotovoltaicsbasedonahighlypuresb2s3absorberbyatomiclayerdeposition AT schelerflorian adjustinginterfacialchemistryandelectronicpropertiesofphotovoltaicsbasedonahighlypuresb2s3absorberbyatomiclayerdeposition AT pointercraig adjustinginterfacialchemistryandelectronicpropertiesofphotovoltaicsbasedonahighlypuresb2s3absorberbyatomiclayerdeposition AT dohlerdirk adjustinginterfacialchemistryandelectronicpropertiesofphotovoltaicsbasedonahighlypuresb2s3absorberbyatomiclayerdeposition AT barrmaissaks adjustinginterfacialchemistryandelectronicpropertiesofphotovoltaicsbasedonahighlypuresb2s3absorberbyatomiclayerdeposition AT korolevaaleksandra adjustinginterfacialchemistryandelectronicpropertiesofphotovoltaicsbasedonahighlypuresb2s3absorberbyatomiclayerdeposition AT pankindmitrii adjustinginterfacialchemistryandelectronicpropertiesofphotovoltaicsbasedonahighlypuresb2s3absorberbyatomiclayerdeposition AT hatadaruriko adjustinginterfacialchemistryandelectronicpropertiesofphotovoltaicsbasedonahighlypuresb2s3absorberbyatomiclayerdeposition AT flegestefan adjustinginterfacialchemistryandelectronicpropertiesofphotovoltaicsbasedonahighlypuresb2s3absorberbyatomiclayerdeposition AT manshinaalina adjustinginterfacialchemistryandelectronicpropertiesofphotovoltaicsbasedonahighlypuresb2s3absorberbyatomiclayerdeposition AT youngelizabethr adjustinginterfacialchemistryandelectronicpropertiesofphotovoltaicsbasedonahighlypuresb2s3absorberbyatomiclayerdeposition AT minguezbachoignacio adjustinginterfacialchemistryandelectronicpropertiesofphotovoltaicsbasedonahighlypuresb2s3absorberbyatomiclayerdeposition AT bachmannjulien adjustinginterfacialchemistryandelectronicpropertiesofphotovoltaicsbasedonahighlypuresb2s3absorberbyatomiclayerdeposition |