Cargando…
A novel model for malaria prediction based on ensemble algorithms
BACKGROUND AND OBJECTIVE: Most previous studies adopted single traditional time series models to predict incidences of malaria. A single model cannot effectively capture all the properties of the data structure. However, a stacking architecture can solve this problem by combining distinct algorithms...
Autores principales: | Wang, Mengyang, Wang, Hui, Wang, Jiao, Liu, Hongwei, Lu, Rui, Duan, Tongqing, Gong, Xiaowen, Feng, Siyuan, Liu, Yuanyuan, Cui, Zhuang, Li, Changping, Ma, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6932799/ https://www.ncbi.nlm.nih.gov/pubmed/31877185 http://dx.doi.org/10.1371/journal.pone.0226910 |
Ejemplares similares
-
GA-Based Membrane Evolutionary Algorithm for Ensemble Clustering
por: Wang, Yanhua, et al.
Publicado: (2017) -
Margin-Based Pareto Ensemble Pruning: An Ensemble Pruning Algorithm That Learns to Search Optimized Ensembles
por: Hu, Ruihan, et al.
Publicado: (2019) -
Efficacy prediction of noninvasive ventilation failure based on the stacking ensemble algorithm and autoencoder
por: Liang, Na, et al.
Publicado: (2022) -
Prevalence and temporal pattern of hospital readmissions for patients with type I and type II diabetes
por: Liu, Xiaoqian, et al.
Publicado: (2015) -
A genetic algorithm enabled ensemble for unsupervised medical term extraction from clinical letters
por: Liu, Wei, et al.
Publicado: (2015)