Cargando…
Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization
Developmental genes are often regulated by multiple enhancers exhibiting similar spatiotemporal outputs, which are generally considered redundantly acting though few have been studied functionally. Using CRISPR-Cas9, we created deletions of two enhancers, brk5’ and brk3’, that drive similar but not...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6932828/ https://www.ncbi.nlm.nih.gov/pubmed/31830033 http://dx.doi.org/10.1371/journal.pgen.1008525 |
_version_ | 1783483088870834176 |
---|---|
author | Dunipace, Leslie Ákos, Zsuzsa Stathopoulos, Angelike |
author_facet | Dunipace, Leslie Ákos, Zsuzsa Stathopoulos, Angelike |
author_sort | Dunipace, Leslie |
collection | PubMed |
description | Developmental genes are often regulated by multiple enhancers exhibiting similar spatiotemporal outputs, which are generally considered redundantly acting though few have been studied functionally. Using CRISPR-Cas9, we created deletions of two enhancers, brk5’ and brk3’, that drive similar but not identical expression of the gene brinker (brk) in early Drosophila embryos. Utilizing both in situ hybridization and quantitative mRNA analysis, we investigated the changes in the gene network state caused by the removal of one or both of the early acting enhancers. brk5’ deletion generally phenocopied the gene mutant, including expansion of the BMP ligand decapentaplegic (dpp) as well as inducing variability in amnioserosa tissue cell number suggesting a loss of canalization. In contrast, brk3’ deletion presented unique phenotypes including dorsal expansion of several ventrally expressed genes and a decrease in amnioserosa cell number. Similarly, deletions were made for two enhancers associated with the gene short-gastrulation (sog), sog.int and sog.dist, demonstrating that they also exhibit distinct patterning phenotypes and affect canalization. In summary, this study shows that similar gene expression driven by coacting enhancers can support distinct, and sometimes complementary, functions within gene regulatory networks and, moreover, that phenotypes associated with individual enhancer deletion mutants can provide insight into new gene functions. |
format | Online Article Text |
id | pubmed-6932828 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-69328282020-01-07 Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization Dunipace, Leslie Ákos, Zsuzsa Stathopoulos, Angelike PLoS Genet Research Article Developmental genes are often regulated by multiple enhancers exhibiting similar spatiotemporal outputs, which are generally considered redundantly acting though few have been studied functionally. Using CRISPR-Cas9, we created deletions of two enhancers, brk5’ and brk3’, that drive similar but not identical expression of the gene brinker (brk) in early Drosophila embryos. Utilizing both in situ hybridization and quantitative mRNA analysis, we investigated the changes in the gene network state caused by the removal of one or both of the early acting enhancers. brk5’ deletion generally phenocopied the gene mutant, including expansion of the BMP ligand decapentaplegic (dpp) as well as inducing variability in amnioserosa tissue cell number suggesting a loss of canalization. In contrast, brk3’ deletion presented unique phenotypes including dorsal expansion of several ventrally expressed genes and a decrease in amnioserosa cell number. Similarly, deletions were made for two enhancers associated with the gene short-gastrulation (sog), sog.int and sog.dist, demonstrating that they also exhibit distinct patterning phenotypes and affect canalization. In summary, this study shows that similar gene expression driven by coacting enhancers can support distinct, and sometimes complementary, functions within gene regulatory networks and, moreover, that phenotypes associated with individual enhancer deletion mutants can provide insight into new gene functions. Public Library of Science 2019-12-12 /pmc/articles/PMC6932828/ /pubmed/31830033 http://dx.doi.org/10.1371/journal.pgen.1008525 Text en © 2019 Dunipace et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Dunipace, Leslie Ákos, Zsuzsa Stathopoulos, Angelike Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization |
title | Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization |
title_full | Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization |
title_fullStr | Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization |
title_full_unstemmed | Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization |
title_short | Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization |
title_sort | coacting enhancers can have complementary functions within gene regulatory networks and promote canalization |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6932828/ https://www.ncbi.nlm.nih.gov/pubmed/31830033 http://dx.doi.org/10.1371/journal.pgen.1008525 |
work_keys_str_mv | AT dunipaceleslie coactingenhancerscanhavecomplementaryfunctionswithingeneregulatorynetworksandpromotecanalization AT akoszsuzsa coactingenhancerscanhavecomplementaryfunctionswithingeneregulatorynetworksandpromotecanalization AT stathopoulosangelike coactingenhancerscanhavecomplementaryfunctionswithingeneregulatorynetworksandpromotecanalization |