Cargando…
Design of Split Hexagonal Patch Array Shaped Nano-metaabsorber with Ultra-wideband Absorption for Visible and UV Spectrum Application
Solar energy is one of the ambient sources where energy can be scavenged easily without pollution. Intent scavenging by the solar cell to recollect energy requires a state-of-the-art technique to expedite energy absorption to electron flow for producing more electricity. Structures of the solar cell...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933044/ https://www.ncbi.nlm.nih.gov/pubmed/31879809 http://dx.doi.org/10.1186/s11671-019-3231-4 |
Sumario: | Solar energy is one of the ambient sources where energy can be scavenged easily without pollution. Intent scavenging by the solar cell to recollect energy requires a state-of-the-art technique to expedite energy absorption to electron flow for producing more electricity. Structures of the solar cell have been researched to improve absorption efficiency, though most of them can only efficiently absorb with narrow-angle tolerance and polarization sensitivity. So, there is a strong demand for broadband absorption with minimal polarization sensitivity absorber, which is required for effective solar energy harvesting. In this paper, we proposed a new Split Hexagonal Patch Array (SHPA) shape metamaterial absorber with Double-negative (DNG) characteristics, which will provide a wide absorption band with low polarization sensitivity for solar spectrum energy harvesting. The proposed new SHPA shape consists of six nano-arms with a single vertical split which with arrowhead symmetry. This arm will steer electromagnetic (EM) resonance to acquire absolute negative permittivity and permeability, ensuring DNG property. This DNG metamaterial features analyzed based on the photoconversion quantum method for maximum photon absorption. The symmetric characteristics of the proposed structure enable the absorber to show polarization insensitivity and wide incident angle absorption capabilities. Simulated SHPA shows a visible and ultraviolet (UV) spectrum electromagnetic wave absorption capacity of more than 95%. The quantum method gives an advantage in the conversion efficiency of the absorber, and the numerical analysis of the proposed SHPA structure provides absorbance quality for THz regime energy harvesting through solar cell or photonic application. |
---|