Cargando…
Expression of Alpha-type Platelet-derived Growth Factor Receptor–influenced Genes Predicts Clinical Outcome in Glioma
BACKGROUND: Alpha-type platelet-derived growth factor receptor (PDGFRα) is a cell surface tyrosine kinase receptor for members of the platelet-derived growth factor family. PDGFRα plays an important role in the regulation of several biological processes and contributes to the pathophysiology of a br...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Neoplasia Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933209/ https://www.ncbi.nlm.nih.gov/pubmed/31869747 http://dx.doi.org/10.1016/j.tranon.2019.10.002 |
Sumario: | BACKGROUND: Alpha-type platelet-derived growth factor receptor (PDGFRα) is a cell surface tyrosine kinase receptor for members of the platelet-derived growth factor family. PDGFRα plays an important role in the regulation of several biological processes and contributes to the pathophysiology of a broad range of human cancers, including glioma. Here, we hypothesize that the genes directly or indirectly influenced by PDGFRα might be useful for prognosis in glioma. METHODS: By comparing the genome-wide gene expression pattern between PDGFRα(+) and PDGFRα(−) cells from human oligodendrocyte progenitor, we defined the genes potentially influenced by PDGFRα. RESULTS: The PDGFRα-influenced genes are strongly associated with cancer-related pathways. We subsequently developed a prognostic gene signature derived from the PDGFRα-influenced genes. This gene signature is able to predict clinical outcome of glioma. This signature is also independent of traditional prognostic factors of glioma. Resampling tests indicate that the prognostic power of this gene signature outperforms random gene sets selected from human genome. More importantly, this signature is superior to the random gene signatures selected from glioma related genes. CONCLUSIONS: Despite the absence of clear elucidation of molecular mechanisms, this study suggests the vital role of PDGFRα in carcinogenesis. Furthermore, the PDGFRα-based gene signature provides a promising prognostic tool for glioma and validates PDGFRα as a novel and effective therapeutic target in human cancers. |
---|