Cargando…

Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease

The photosynthetic pigments are mainly responsible for absorbing the light intended to promote photosynthesis on the chloroplast of the leaves. Different studies have related the spectral response in the leaves of plants with the biotic stress generated by pathogens. In general, maximum differences...

Descripción completa

Detalles Bibliográficos
Autores principales: Marín-Ortiz, Juan Carlos, Gutierrez-Toro, Nathalia, Botero-Fernández, Verónica, Hoyos-Carvajal, Lilliana María
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933213/
https://www.ncbi.nlm.nih.gov/pubmed/31889822
http://dx.doi.org/10.1016/j.sjbs.2019.05.007
_version_ 1783483162292125696
author Marín-Ortiz, Juan Carlos
Gutierrez-Toro, Nathalia
Botero-Fernández, Verónica
Hoyos-Carvajal, Lilliana María
author_facet Marín-Ortiz, Juan Carlos
Gutierrez-Toro, Nathalia
Botero-Fernández, Verónica
Hoyos-Carvajal, Lilliana María
author_sort Marín-Ortiz, Juan Carlos
collection PubMed
description The photosynthetic pigments are mainly responsible for absorbing the light intended to promote photosynthesis on the chloroplast of the leaves. Different studies have related the spectral response in the leaves of plants with the biotic stress generated by pathogens. In general, maximum differences in reflectance have been found in the range of 380–750 nm between plants subjected to biotic stress and healthy plants. In this study, it was possible to characterize and relate the spectral variance in leaves of S. lycopersicum infected with F. oxysporum with this physiological variation and pathogen concentration in tomato plants during the asymptomatic period of vascular wilt. Photosynthetic parameters derived from gaseous exchange analysis in the tomato leaves correlated related with four bands in the visible range (Vis). Additionally, five specific bands also present a high correlation with the increase in the concentration of F. oxysporum conidia measured at the root: 448–523 nm, 624–696 nm, 740–960 nm, 973–976 nm, and 992–995 nm. These wavelengths allowed a 100% correct classification of the plants inoculated with F. oxysporum from the plants subjected to hydric stress and the control plants in the asymptomatic period of the disease. The spectral response to biotic and abiotic stress in the measured Vis/NIR range can be explained by the general tendency to change the concentration of chlorophyll and carotene in tomato leaves. These studies also highlight the importance of the implementation of robust multivariate analysis over the multiple univariate analysis used in the applied biological sciences and specifically in the agricultural sciences. These results demonstrate that specific wavelength responses are due to physiological changes in plants subjected to stress, and can be used in indexes and algorithms applied to the early detection of diseases in plants on different pathosystems.
format Online
Article
Text
id pubmed-6933213
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-69332132019-12-30 Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease Marín-Ortiz, Juan Carlos Gutierrez-Toro, Nathalia Botero-Fernández, Verónica Hoyos-Carvajal, Lilliana María Saudi J Biol Sci Article The photosynthetic pigments are mainly responsible for absorbing the light intended to promote photosynthesis on the chloroplast of the leaves. Different studies have related the spectral response in the leaves of plants with the biotic stress generated by pathogens. In general, maximum differences in reflectance have been found in the range of 380–750 nm between plants subjected to biotic stress and healthy plants. In this study, it was possible to characterize and relate the spectral variance in leaves of S. lycopersicum infected with F. oxysporum with this physiological variation and pathogen concentration in tomato plants during the asymptomatic period of vascular wilt. Photosynthetic parameters derived from gaseous exchange analysis in the tomato leaves correlated related with four bands in the visible range (Vis). Additionally, five specific bands also present a high correlation with the increase in the concentration of F. oxysporum conidia measured at the root: 448–523 nm, 624–696 nm, 740–960 nm, 973–976 nm, and 992–995 nm. These wavelengths allowed a 100% correct classification of the plants inoculated with F. oxysporum from the plants subjected to hydric stress and the control plants in the asymptomatic period of the disease. The spectral response to biotic and abiotic stress in the measured Vis/NIR range can be explained by the general tendency to change the concentration of chlorophyll and carotene in tomato leaves. These studies also highlight the importance of the implementation of robust multivariate analysis over the multiple univariate analysis used in the applied biological sciences and specifically in the agricultural sciences. These results demonstrate that specific wavelength responses are due to physiological changes in plants subjected to stress, and can be used in indexes and algorithms applied to the early detection of diseases in plants on different pathosystems. Elsevier 2020-01 2019-05-31 /pmc/articles/PMC6933213/ /pubmed/31889822 http://dx.doi.org/10.1016/j.sjbs.2019.05.007 Text en © 2019 King Saud University http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Marín-Ortiz, Juan Carlos
Gutierrez-Toro, Nathalia
Botero-Fernández, Verónica
Hoyos-Carvajal, Lilliana María
Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease
title Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease
title_full Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease
title_fullStr Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease
title_full_unstemmed Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease
title_short Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease
title_sort linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933213/
https://www.ncbi.nlm.nih.gov/pubmed/31889822
http://dx.doi.org/10.1016/j.sjbs.2019.05.007
work_keys_str_mv AT marinortizjuancarlos linkingphysiologicalparameterswithvisiblenearinfraredleafreflectanceintheincubationperiodofvascularwiltdisease
AT gutierreztoronathalia linkingphysiologicalparameterswithvisiblenearinfraredleafreflectanceintheincubationperiodofvascularwiltdisease
AT boterofernandezveronica linkingphysiologicalparameterswithvisiblenearinfraredleafreflectanceintheincubationperiodofvascularwiltdisease
AT hoyoscarvajallillianamaria linkingphysiologicalparameterswithvisiblenearinfraredleafreflectanceintheincubationperiodofvascularwiltdisease