Cargando…

Assessment of DNA integrity through MN bioassay of erythrocytes and histopathological changes in Wallago attu and Cirrhinus mirigala in response to freshwater pollution

The aim of this study was to determine the level of contamination and genotoxic impact through micronucleus assay and histopathology in Wallago attu and Cirrhinus mrigala procured from the polluted site of the River Chenab at industrial and sewage waste disposal. The water sample was found viciously...

Descripción completa

Detalles Bibliográficos
Autores principales: Hussain, Bilal, Fatima, Maleeha, Al-Ghanim, K.A., Al-Misned, F., Mahboob, Shahid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933249/
https://www.ncbi.nlm.nih.gov/pubmed/31889845
http://dx.doi.org/10.1016/j.sjbs.2019.09.003
_version_ 1783483170811805696
author Hussain, Bilal
Fatima, Maleeha
Al-Ghanim, K.A.
Al-Misned, F.
Mahboob, Shahid
author_facet Hussain, Bilal
Fatima, Maleeha
Al-Ghanim, K.A.
Al-Misned, F.
Mahboob, Shahid
author_sort Hussain, Bilal
collection PubMed
description The aim of this study was to determine the level of contamination and genotoxic impact through micronucleus assay and histopathology in Wallago attu and Cirrhinus mrigala procured from the polluted site of the River Chenab at industrial and sewage waste disposal. The water sample was found viciously contaminated with heavy metals i.e. Ni, Cr, Mn, Co, Pb, Hg, Zn, Sn, Cu while all other physio-chemical variables crossed the suggested limits of WHO. The heavy metals load induced histopathological alterations were correlated to environmental degradation and the productivity of this biological system. W. attu and C. mrigala harvested from contaminated sites of the river indicated higher intensity of DNA damage through micronucleus induction and nuclear abnormalities with 5.46 ± 0.17, 1.23 ± 0.08 and 4.2 ± 0.11, 0.4 ± 0.04‰ respectively. Muscle sections of W. attu and C. mrigala harvested from the polluted section of river demonstrated the necrosis, degeneration of muscle fibers, intra-fibular edema and release of the blood into the tissues due to the bursting of blocked of the blood vessels. Dermal layers showed degeneration of the collagen bundles those were found loose or collapsed in some regions. Photomicrography also revealed vacuolar degeneration in muscle tissues and atrophy of muscle bundles. Intra fibular edema and splitting of muscle fibers were also seen along with bioaccumulation of toxicants. W. attu showed maximum incidence of alterations with highest histopathological alteration index related to environmental degradation. Control fish samples showed normal muscle tissues with normal equally spaced muscle bundles and myotomes.
format Online
Article
Text
id pubmed-6933249
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-69332492019-12-30 Assessment of DNA integrity through MN bioassay of erythrocytes and histopathological changes in Wallago attu and Cirrhinus mirigala in response to freshwater pollution Hussain, Bilal Fatima, Maleeha Al-Ghanim, K.A. Al-Misned, F. Mahboob, Shahid Saudi J Biol Sci Article The aim of this study was to determine the level of contamination and genotoxic impact through micronucleus assay and histopathology in Wallago attu and Cirrhinus mrigala procured from the polluted site of the River Chenab at industrial and sewage waste disposal. The water sample was found viciously contaminated with heavy metals i.e. Ni, Cr, Mn, Co, Pb, Hg, Zn, Sn, Cu while all other physio-chemical variables crossed the suggested limits of WHO. The heavy metals load induced histopathological alterations were correlated to environmental degradation and the productivity of this biological system. W. attu and C. mrigala harvested from contaminated sites of the river indicated higher intensity of DNA damage through micronucleus induction and nuclear abnormalities with 5.46 ± 0.17, 1.23 ± 0.08 and 4.2 ± 0.11, 0.4 ± 0.04‰ respectively. Muscle sections of W. attu and C. mrigala harvested from the polluted section of river demonstrated the necrosis, degeneration of muscle fibers, intra-fibular edema and release of the blood into the tissues due to the bursting of blocked of the blood vessels. Dermal layers showed degeneration of the collagen bundles those were found loose or collapsed in some regions. Photomicrography also revealed vacuolar degeneration in muscle tissues and atrophy of muscle bundles. Intra fibular edema and splitting of muscle fibers were also seen along with bioaccumulation of toxicants. W. attu showed maximum incidence of alterations with highest histopathological alteration index related to environmental degradation. Control fish samples showed normal muscle tissues with normal equally spaced muscle bundles and myotomes. Elsevier 2020-01 2019-09-03 /pmc/articles/PMC6933249/ /pubmed/31889845 http://dx.doi.org/10.1016/j.sjbs.2019.09.003 Text en © 2019 King Saud University http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Hussain, Bilal
Fatima, Maleeha
Al-Ghanim, K.A.
Al-Misned, F.
Mahboob, Shahid
Assessment of DNA integrity through MN bioassay of erythrocytes and histopathological changes in Wallago attu and Cirrhinus mirigala in response to freshwater pollution
title Assessment of DNA integrity through MN bioassay of erythrocytes and histopathological changes in Wallago attu and Cirrhinus mirigala in response to freshwater pollution
title_full Assessment of DNA integrity through MN bioassay of erythrocytes and histopathological changes in Wallago attu and Cirrhinus mirigala in response to freshwater pollution
title_fullStr Assessment of DNA integrity through MN bioassay of erythrocytes and histopathological changes in Wallago attu and Cirrhinus mirigala in response to freshwater pollution
title_full_unstemmed Assessment of DNA integrity through MN bioassay of erythrocytes and histopathological changes in Wallago attu and Cirrhinus mirigala in response to freshwater pollution
title_short Assessment of DNA integrity through MN bioassay of erythrocytes and histopathological changes in Wallago attu and Cirrhinus mirigala in response to freshwater pollution
title_sort assessment of dna integrity through mn bioassay of erythrocytes and histopathological changes in wallago attu and cirrhinus mirigala in response to freshwater pollution
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933249/
https://www.ncbi.nlm.nih.gov/pubmed/31889845
http://dx.doi.org/10.1016/j.sjbs.2019.09.003
work_keys_str_mv AT hussainbilal assessmentofdnaintegritythroughmnbioassayoferythrocytesandhistopathologicalchangesinwallagoattuandcirrhinusmirigalainresponsetofreshwaterpollution
AT fatimamaleeha assessmentofdnaintegritythroughmnbioassayoferythrocytesandhistopathologicalchangesinwallagoattuandcirrhinusmirigalainresponsetofreshwaterpollution
AT alghanimka assessmentofdnaintegritythroughmnbioassayoferythrocytesandhistopathologicalchangesinwallagoattuandcirrhinusmirigalainresponsetofreshwaterpollution
AT almisnedf assessmentofdnaintegritythroughmnbioassayoferythrocytesandhistopathologicalchangesinwallagoattuandcirrhinusmirigalainresponsetofreshwaterpollution
AT mahboobshahid assessmentofdnaintegritythroughmnbioassayoferythrocytesandhistopathologicalchangesinwallagoattuandcirrhinusmirigalainresponsetofreshwaterpollution