Cargando…
Algorithmic prediction of HIV status using nation-wide electronic registry data
BACKGROUND: Late HIV diagnosis is detrimental both to the individual and to society. Strategies to improve early diagnosis of HIV must be a key health care priority. We examined whether nation-wide electronic registry data could be used to predict HIV status using machine learning algorithms. METHOD...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933258/ https://www.ncbi.nlm.nih.gov/pubmed/31891137 http://dx.doi.org/10.1016/j.eclinm.2019.10.016 |
_version_ | 1783483172923637760 |
---|---|
author | Ahlström, Magnus G. Ronit, Andreas Omland, Lars Haukali Vedel, Søren Obel, Niels |
author_facet | Ahlström, Magnus G. Ronit, Andreas Omland, Lars Haukali Vedel, Søren Obel, Niels |
author_sort | Ahlström, Magnus G. |
collection | PubMed |
description | BACKGROUND: Late HIV diagnosis is detrimental both to the individual and to society. Strategies to improve early diagnosis of HIV must be a key health care priority. We examined whether nation-wide electronic registry data could be used to predict HIV status using machine learning algorithms. METHODS: We extracted individual level data from Danish registries and used algorithms to predict HIV status. We used various algorithms to train prediction models and validated these models. We calibrated the models to mimic different clinical scenarios and created confusion matrices based on the calibrated models. FINDINGS: A total 4,384,178 individuals, including 4,350 with incident HIV, were included in the analyses. The full model that included all variables that included demographic variables and information on past medical history had the highest area under the receiver operating characteristics curves of 88·4% (95%CI: 87·5% – 89·4%) in the validation dataset. Performance measures did not differ substantially with regards to which machine learning algorithm was used. When we calibrated the models to a specificity of 99·9% (pre-exposure prophylaxis (PrEP) scenario), we found a positive predictive value (PPV) of 8·3% in the full model. When we calibrated the models to a sensitivity of 90% (screening scenario), 384 individuals would have to be tested to find one undiagnosed person with HIV. INTERPRETATION: Machine learning algorithms can learn from electronic registry data and help to predict HIV status with a fairly high level of accuracy. Integration of prediction models into clinical software systems may complement existing strategies such as indicator condition-guided HIV testing and prove useful for identifying individuals suitable for PrEP. FUNDING: The study was supported by funds from the Preben and Anne Simonsens Foundation, the Novo Nordisk Foundation, Rigshospitalet, Copenhagen University, the Danish AIDS Foundation, the Augustinus Foundation and the Danish Health Foundation. |
format | Online Article Text |
id | pubmed-6933258 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-69332582019-12-30 Algorithmic prediction of HIV status using nation-wide electronic registry data Ahlström, Magnus G. Ronit, Andreas Omland, Lars Haukali Vedel, Søren Obel, Niels EClinicalMedicine Research Paper BACKGROUND: Late HIV diagnosis is detrimental both to the individual and to society. Strategies to improve early diagnosis of HIV must be a key health care priority. We examined whether nation-wide electronic registry data could be used to predict HIV status using machine learning algorithms. METHODS: We extracted individual level data from Danish registries and used algorithms to predict HIV status. We used various algorithms to train prediction models and validated these models. We calibrated the models to mimic different clinical scenarios and created confusion matrices based on the calibrated models. FINDINGS: A total 4,384,178 individuals, including 4,350 with incident HIV, were included in the analyses. The full model that included all variables that included demographic variables and information on past medical history had the highest area under the receiver operating characteristics curves of 88·4% (95%CI: 87·5% – 89·4%) in the validation dataset. Performance measures did not differ substantially with regards to which machine learning algorithm was used. When we calibrated the models to a specificity of 99·9% (pre-exposure prophylaxis (PrEP) scenario), we found a positive predictive value (PPV) of 8·3% in the full model. When we calibrated the models to a sensitivity of 90% (screening scenario), 384 individuals would have to be tested to find one undiagnosed person with HIV. INTERPRETATION: Machine learning algorithms can learn from electronic registry data and help to predict HIV status with a fairly high level of accuracy. Integration of prediction models into clinical software systems may complement existing strategies such as indicator condition-guided HIV testing and prove useful for identifying individuals suitable for PrEP. FUNDING: The study was supported by funds from the Preben and Anne Simonsens Foundation, the Novo Nordisk Foundation, Rigshospitalet, Copenhagen University, the Danish AIDS Foundation, the Augustinus Foundation and the Danish Health Foundation. Elsevier 2019-11-05 /pmc/articles/PMC6933258/ /pubmed/31891137 http://dx.doi.org/10.1016/j.eclinm.2019.10.016 Text en © 2019 Published by Elsevier Ltd. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Ahlström, Magnus G. Ronit, Andreas Omland, Lars Haukali Vedel, Søren Obel, Niels Algorithmic prediction of HIV status using nation-wide electronic registry data |
title | Algorithmic prediction of HIV status using nation-wide electronic registry data |
title_full | Algorithmic prediction of HIV status using nation-wide electronic registry data |
title_fullStr | Algorithmic prediction of HIV status using nation-wide electronic registry data |
title_full_unstemmed | Algorithmic prediction of HIV status using nation-wide electronic registry data |
title_short | Algorithmic prediction of HIV status using nation-wide electronic registry data |
title_sort | algorithmic prediction of hiv status using nation-wide electronic registry data |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933258/ https://www.ncbi.nlm.nih.gov/pubmed/31891137 http://dx.doi.org/10.1016/j.eclinm.2019.10.016 |
work_keys_str_mv | AT ahlstrommagnusg algorithmicpredictionofhivstatususingnationwideelectronicregistrydata AT ronitandreas algorithmicpredictionofhivstatususingnationwideelectronicregistrydata AT omlandlarshaukali algorithmicpredictionofhivstatususingnationwideelectronicregistrydata AT vedelsøren algorithmicpredictionofhivstatususingnationwideelectronicregistrydata AT obelniels algorithmicpredictionofhivstatususingnationwideelectronicregistrydata |