Cargando…

MT1JP inhibits glioma progression via negative regulation of miR-24

Long noncoding RNAs have been reported to be dysregulated and have pivotal roles in various human malignancies, including glioma. Previous studies revealed that metallothionein 1J (MT1JP) has important regulatory functions in the development of gastric cancer. However, the biological role and potent...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jinming, Lou, Jianyun, Yang, Shaochun, Lou, Jun, Liao, Wei, Zhou, Renxiang, Qiu, Chuanzhen, Ding, Guanfu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933312/
https://www.ncbi.nlm.nih.gov/pubmed/31890049
http://dx.doi.org/10.3892/ol.2019.11085
Descripción
Sumario:Long noncoding RNAs have been reported to be dysregulated and have pivotal roles in various human malignancies, including glioma. Previous studies revealed that metallothionein 1J (MT1JP) has important regulatory functions in the development of gastric cancer. However, the biological role and potential mechanism of MT1JP in glioma remain unknown. The present study suggested that MT1JP expression was significantly downregulated in glioma tissues and glioma cell lines, and the decreased expression of MT1JP was associated with glioma progression and poor survival of patients with glioma. Additionally, overexpression of MT1JP significantly inhibited the proliferation and invasion of glioma cells. Furthermore, it was revealed that MT1JP interacted with microRNA-24 (miR-24), which has previously been reported as an oncogene in glioma, negatively regulating its expression level. Rescue experiments revealed that the tumor suppressive functions of MT1JP may be mediated by the negative regulation of miR-24. Collectively, the data suggested that MT1JP inhibited the progression of glioma by negatively regulating miR-24 and may serve as a novel diagnostic biomarker and therapeutic target for glioma.