Cargando…
Down‐regulation of the mitochondrial i‐AAA protease Yme1L induces muscle atrophy via FoxO3a and myostatin activation
Muscle atrophy is closely associated with many diseases, including diabetes and cardiac failure. Growing evidence has shown that mitochondrial dysfunction is related to muscle atrophy; however, the underlying mechanisms are still unclear. To elucidate how mitochondrial dysfunction causes muscle atro...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933342/ https://www.ncbi.nlm.nih.gov/pubmed/31725201 http://dx.doi.org/10.1111/jcmm.14799 |
_version_ | 1783483192449171456 |
---|---|
author | Lee, Yoo Jeong Kim, Gyu Hee Park, Sang Ick Lim, Joo Hyun |
author_facet | Lee, Yoo Jeong Kim, Gyu Hee Park, Sang Ick Lim, Joo Hyun |
author_sort | Lee, Yoo Jeong |
collection | PubMed |
description | Muscle atrophy is closely associated with many diseases, including diabetes and cardiac failure. Growing evidence has shown that mitochondrial dysfunction is related to muscle atrophy; however, the underlying mechanisms are still unclear. To elucidate how mitochondrial dysfunction causes muscle atrophy, we used hindlimb‐immobilized mice. Mitochondrial function is optimized by balancing mitochondrial dynamics, and we observed that this balance shifted towards mitochondrial fission and that MuRF1 and atrogin‐1 expression levels were elevated in these mice. We also found that the expression of yeast mitochondrial escape 1‐like ATPase (Yme1L), a mitochondrial AAA protease was significantly reduced both in hindlimb‐immobilized mice and carbonyl cyanide m‐chlorophenylhydrazone (CCCP)‐treated C2C12 myotubes. When Yme1L was depleted in myotubes, the short form of optic atrophy 1 (Opa1) accumulated, leading to mitochondrial fragmentation. Moreover, a loss of Yme1L, but not of LonP1, activated AMPK and FoxO3a and concomitantly increased MuRF1 in C2C12 myotubes. Intriguingly, the expression of myostatin, a myokine responsible for muscle protein degradation, was significantly increased by the transient knock‐down of Yme1L. Taken together, our results suggest that a deficiency in Yme1L and the consequential imbalance in mitochondrial dynamics result in the activation of FoxO3a and myostatin, which contribute to the pathological state of muscle atrophy. |
format | Online Article Text |
id | pubmed-6933342 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-69333422020-01-01 Down‐regulation of the mitochondrial i‐AAA protease Yme1L induces muscle atrophy via FoxO3a and myostatin activation Lee, Yoo Jeong Kim, Gyu Hee Park, Sang Ick Lim, Joo Hyun J Cell Mol Med Original Articles Muscle atrophy is closely associated with many diseases, including diabetes and cardiac failure. Growing evidence has shown that mitochondrial dysfunction is related to muscle atrophy; however, the underlying mechanisms are still unclear. To elucidate how mitochondrial dysfunction causes muscle atrophy, we used hindlimb‐immobilized mice. Mitochondrial function is optimized by balancing mitochondrial dynamics, and we observed that this balance shifted towards mitochondrial fission and that MuRF1 and atrogin‐1 expression levels were elevated in these mice. We also found that the expression of yeast mitochondrial escape 1‐like ATPase (Yme1L), a mitochondrial AAA protease was significantly reduced both in hindlimb‐immobilized mice and carbonyl cyanide m‐chlorophenylhydrazone (CCCP)‐treated C2C12 myotubes. When Yme1L was depleted in myotubes, the short form of optic atrophy 1 (Opa1) accumulated, leading to mitochondrial fragmentation. Moreover, a loss of Yme1L, but not of LonP1, activated AMPK and FoxO3a and concomitantly increased MuRF1 in C2C12 myotubes. Intriguingly, the expression of myostatin, a myokine responsible for muscle protein degradation, was significantly increased by the transient knock‐down of Yme1L. Taken together, our results suggest that a deficiency in Yme1L and the consequential imbalance in mitochondrial dynamics result in the activation of FoxO3a and myostatin, which contribute to the pathological state of muscle atrophy. John Wiley and Sons Inc. 2019-11-14 2020-01 /pmc/articles/PMC6933342/ /pubmed/31725201 http://dx.doi.org/10.1111/jcmm.14799 Text en © 2019 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Lee, Yoo Jeong Kim, Gyu Hee Park, Sang Ick Lim, Joo Hyun Down‐regulation of the mitochondrial i‐AAA protease Yme1L induces muscle atrophy via FoxO3a and myostatin activation |
title | Down‐regulation of the mitochondrial i‐AAA protease Yme1L induces muscle atrophy via FoxO3a and myostatin activation |
title_full | Down‐regulation of the mitochondrial i‐AAA protease Yme1L induces muscle atrophy via FoxO3a and myostatin activation |
title_fullStr | Down‐regulation of the mitochondrial i‐AAA protease Yme1L induces muscle atrophy via FoxO3a and myostatin activation |
title_full_unstemmed | Down‐regulation of the mitochondrial i‐AAA protease Yme1L induces muscle atrophy via FoxO3a and myostatin activation |
title_short | Down‐regulation of the mitochondrial i‐AAA protease Yme1L induces muscle atrophy via FoxO3a and myostatin activation |
title_sort | down‐regulation of the mitochondrial i‐aaa protease yme1l induces muscle atrophy via foxo3a and myostatin activation |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933342/ https://www.ncbi.nlm.nih.gov/pubmed/31725201 http://dx.doi.org/10.1111/jcmm.14799 |
work_keys_str_mv | AT leeyoojeong downregulationofthemitochondrialiaaaproteaseyme1linducesmuscleatrophyviafoxo3aandmyostatinactivation AT kimgyuhee downregulationofthemitochondrialiaaaproteaseyme1linducesmuscleatrophyviafoxo3aandmyostatinactivation AT parksangick downregulationofthemitochondrialiaaaproteaseyme1linducesmuscleatrophyviafoxo3aandmyostatinactivation AT limjoohyun downregulationofthemitochondrialiaaaproteaseyme1linducesmuscleatrophyviafoxo3aandmyostatinactivation |