Cargando…
SP1‐mediated lncRNA PVT1 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract via miR‐214‐3p/MMP2 axis
Emerging evidence illustrates the critical roles of long non‐coding RNAs (lncRNAs) in the diabetes. However, the deepgoing regulation of lncRNA PVT1 in the diabetic cataract (DC) is still unclear. Here, present research investigates the pathologic roles and underlying mechanism by which lncRNA PVT1...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933388/ https://www.ncbi.nlm.nih.gov/pubmed/31755246 http://dx.doi.org/10.1111/jcmm.14762 |
Sumario: | Emerging evidence illustrates the critical roles of long non‐coding RNAs (lncRNAs) in the diabetes. However, the deepgoing regulation of lncRNA PVT1 in the diabetic cataract (DC) is still unclear. Here, present research investigates the pathologic roles and underlying mechanism by which lncRNA PVT1 regulates the DC pathogenesis. Human lens epithelial (HLE) B‐3 cells were induced by the high glucose (HG) to simulate the DC microenvironment models. Results revealed that lncRNA PVT1 expression was up‐regulated in the HG‐induced HLE B‐3 cells as compared to the normal glucose group. Transcription factor SP1 could bind with the promoter region of PVT1 and activate its transcription. Functionally, PVT1 knock‐down could repress the proliferation and promote the apoptosis of HLE B‐3 cells. Mechanistically, PVT1 acted as the ‘miRNA sponge’ to target miR‐214‐3p/MMP2 axis. This finding revealed a novel insight of lncRNA PVT1 for the DC pathogenesis, providing an inspiration for the DC mechanism. |
---|