Cargando…
In silico prediction of potential miRNA‐disease association using an integrative bioinformatics approach based on kernel fusion
Accumulating experimental evidence has demonstrated that microRNAs (miRNAs) have a huge impact on numerous critical biological processes and they are associated with different complex human diseases. Nevertheless, the task to predict potential miRNAs related to diseases remains difficult. In this pa...
Autores principales: | Guan, Na‐Na, Wang, Chun‐Chun, Zhang, Li, Huang, Li, Li, Jian‐Qiang, Piao, Xue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933403/ https://www.ncbi.nlm.nih.gov/pubmed/31747722 http://dx.doi.org/10.1111/jcmm.14765 |
Ejemplares similares
-
Inferring human miRNA–disease associations via multiple kernel fusion on GCNII
por: Lu, Shanghui, et al.
Publicado: (2022) -
A Computational Study of Potential miRNA-Disease Association Inference Based on Ensemble Learning and Kernel Ridge Regression
por: Peng, Li-Hong, et al.
Publicado: (2020) -
GRMDA: Graph Regression for MiRNA-Disease Association Prediction
por: Chen, Xing, et al.
Publicado: (2018) -
MDA-SKF: Similarity Kernel Fusion for Accurately Discovering miRNA-Disease Association
por: Jiang, Limin, et al.
Publicado: (2018) -
Identification of Potential Osteoporosis miRNA Biomarkers Using Bioinformatics Approaches
por: Lu, Wei, et al.
Publicado: (2021)