Cargando…

Pathway-Dependent Regulation of Sleep Dynamics in a Network Model of the Sleep–Wake Cycle

Sleep is a fundamental homeostatic process within the animal kingdom. Although various brain areas and cell types are involved in the regulation of the sleep–wake cycle, it is still unclear how different pathways between neural populations contribute to its regulation. Here we address this issue by...

Descripción completa

Detalles Bibliográficos
Autores principales: Héricé, Charlotte, Sakata, Shuzo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933528/
https://www.ncbi.nlm.nih.gov/pubmed/31920528
http://dx.doi.org/10.3389/fnins.2019.01380
_version_ 1783483229588684800
author Héricé, Charlotte
Sakata, Shuzo
author_facet Héricé, Charlotte
Sakata, Shuzo
author_sort Héricé, Charlotte
collection PubMed
description Sleep is a fundamental homeostatic process within the animal kingdom. Although various brain areas and cell types are involved in the regulation of the sleep–wake cycle, it is still unclear how different pathways between neural populations contribute to its regulation. Here we address this issue by investigating the behavior of a simplified network model upon synaptic weight manipulations. Our model consists of three neural populations connected by excitatory and inhibitory synapses. Activity in each population is described by a firing-rate model, which determines the state of the network. Namely wakefulness, rapid eye movement (REM) sleep or non-REM (NREM) sleep. By systematically manipulating the synaptic weight of every pathway, we show that even this simplified model exhibits non-trivial behaviors: for example, the wake-promoting population contributes not just to the induction and maintenance of wakefulness, but also to sleep induction. Although a recurrent excitatory connection of the REM-promoting population is essential for REM sleep genesis, this recurrent connection does not necessarily contribute to the maintenance of REM sleep. The duration of NREM sleep can be shortened or extended by changes in the synaptic strength of the pathways from the NREM-promoting population. In some cases, there is an optimal range of synaptic strengths that affect a particular state, implying that the amount of manipulations, not just direction (i.e., activation or inactivation), needs to be taken into account. These results demonstrate pathway-dependent regulation of sleep dynamics and highlight the importance of systems-level quantitative approaches for sleep–wake regulatory circuits.
format Online
Article
Text
id pubmed-6933528
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-69335282020-01-09 Pathway-Dependent Regulation of Sleep Dynamics in a Network Model of the Sleep–Wake Cycle Héricé, Charlotte Sakata, Shuzo Front Neurosci Neuroscience Sleep is a fundamental homeostatic process within the animal kingdom. Although various brain areas and cell types are involved in the regulation of the sleep–wake cycle, it is still unclear how different pathways between neural populations contribute to its regulation. Here we address this issue by investigating the behavior of a simplified network model upon synaptic weight manipulations. Our model consists of three neural populations connected by excitatory and inhibitory synapses. Activity in each population is described by a firing-rate model, which determines the state of the network. Namely wakefulness, rapid eye movement (REM) sleep or non-REM (NREM) sleep. By systematically manipulating the synaptic weight of every pathway, we show that even this simplified model exhibits non-trivial behaviors: for example, the wake-promoting population contributes not just to the induction and maintenance of wakefulness, but also to sleep induction. Although a recurrent excitatory connection of the REM-promoting population is essential for REM sleep genesis, this recurrent connection does not necessarily contribute to the maintenance of REM sleep. The duration of NREM sleep can be shortened or extended by changes in the synaptic strength of the pathways from the NREM-promoting population. In some cases, there is an optimal range of synaptic strengths that affect a particular state, implying that the amount of manipulations, not just direction (i.e., activation or inactivation), needs to be taken into account. These results demonstrate pathway-dependent regulation of sleep dynamics and highlight the importance of systems-level quantitative approaches for sleep–wake regulatory circuits. Frontiers Media S.A. 2019-12-20 /pmc/articles/PMC6933528/ /pubmed/31920528 http://dx.doi.org/10.3389/fnins.2019.01380 Text en Copyright © 2019 Héricé and Sakata. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Héricé, Charlotte
Sakata, Shuzo
Pathway-Dependent Regulation of Sleep Dynamics in a Network Model of the Sleep–Wake Cycle
title Pathway-Dependent Regulation of Sleep Dynamics in a Network Model of the Sleep–Wake Cycle
title_full Pathway-Dependent Regulation of Sleep Dynamics in a Network Model of the Sleep–Wake Cycle
title_fullStr Pathway-Dependent Regulation of Sleep Dynamics in a Network Model of the Sleep–Wake Cycle
title_full_unstemmed Pathway-Dependent Regulation of Sleep Dynamics in a Network Model of the Sleep–Wake Cycle
title_short Pathway-Dependent Regulation of Sleep Dynamics in a Network Model of the Sleep–Wake Cycle
title_sort pathway-dependent regulation of sleep dynamics in a network model of the sleep–wake cycle
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933528/
https://www.ncbi.nlm.nih.gov/pubmed/31920528
http://dx.doi.org/10.3389/fnins.2019.01380
work_keys_str_mv AT hericecharlotte pathwaydependentregulationofsleepdynamicsinanetworkmodelofthesleepwakecycle
AT sakatashuzo pathwaydependentregulationofsleepdynamicsinanetworkmodelofthesleepwakecycle