Cargando…
Investigating the Effect of Reaction Time on Carbon Dot Formation, Structure, and Optical Properties
[Image: see text] Carbon dots, a young member of the carbon nanomaterial family, are quasi-spherical nanoparticles, which have fluorescent properties as their key characteristic. A wide range of starting materials and synthetic routes have been reported in the literature, divided into two main categ...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933582/ https://www.ncbi.nlm.nih.gov/pubmed/31891043 http://dx.doi.org/10.1021/acsomega.9b01798 |
_version_ | 1783483234518040576 |
---|---|
author | Papaioannou, Nikolaos Titirici, Maria-Magdalena Sapelkin, Andrei |
author_facet | Papaioannou, Nikolaos Titirici, Maria-Magdalena Sapelkin, Andrei |
author_sort | Papaioannou, Nikolaos |
collection | PubMed |
description | [Image: see text] Carbon dots, a young member of the carbon nanomaterial family, are quasi-spherical nanoparticles, which have fluorescent properties as their key characteristic. A wide range of starting materials and synthetic routes have been reported in the literature, divided into two main categories: a top-down and bottom-up approach. Moreover, a series of different parameters that affect the properties of carbon dots have been investigated, including temperature, starting pH, as well as precursor concentration. However, the effect of reaction time has not been extensively monitored. In our study, a biomass derivative was treated hydrothermally with varying reaction times to draw a solid formation mechanism. In addition, we monitored the effect of reaction time on optical and structural characteristics, as well as the chemical composition of our materials. Our key findings include a four-stage formation mechanism, a higher level of crystallinity, and an increasing brightness over reaction time. |
format | Online Article Text |
id | pubmed-6933582 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-69335822019-12-30 Investigating the Effect of Reaction Time on Carbon Dot Formation, Structure, and Optical Properties Papaioannou, Nikolaos Titirici, Maria-Magdalena Sapelkin, Andrei ACS Omega [Image: see text] Carbon dots, a young member of the carbon nanomaterial family, are quasi-spherical nanoparticles, which have fluorescent properties as their key characteristic. A wide range of starting materials and synthetic routes have been reported in the literature, divided into two main categories: a top-down and bottom-up approach. Moreover, a series of different parameters that affect the properties of carbon dots have been investigated, including temperature, starting pH, as well as precursor concentration. However, the effect of reaction time has not been extensively monitored. In our study, a biomass derivative was treated hydrothermally with varying reaction times to draw a solid formation mechanism. In addition, we monitored the effect of reaction time on optical and structural characteristics, as well as the chemical composition of our materials. Our key findings include a four-stage formation mechanism, a higher level of crystallinity, and an increasing brightness over reaction time. American Chemical Society 2019-12-12 /pmc/articles/PMC6933582/ /pubmed/31891043 http://dx.doi.org/10.1021/acsomega.9b01798 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Papaioannou, Nikolaos Titirici, Maria-Magdalena Sapelkin, Andrei Investigating the Effect of Reaction Time on Carbon Dot Formation, Structure, and Optical Properties |
title | Investigating the
Effect of Reaction Time on Carbon
Dot Formation, Structure, and Optical Properties |
title_full | Investigating the
Effect of Reaction Time on Carbon
Dot Formation, Structure, and Optical Properties |
title_fullStr | Investigating the
Effect of Reaction Time on Carbon
Dot Formation, Structure, and Optical Properties |
title_full_unstemmed | Investigating the
Effect of Reaction Time on Carbon
Dot Formation, Structure, and Optical Properties |
title_short | Investigating the
Effect of Reaction Time on Carbon
Dot Formation, Structure, and Optical Properties |
title_sort | investigating the
effect of reaction time on carbon
dot formation, structure, and optical properties |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933582/ https://www.ncbi.nlm.nih.gov/pubmed/31891043 http://dx.doi.org/10.1021/acsomega.9b01798 |
work_keys_str_mv | AT papaioannounikolaos investigatingtheeffectofreactiontimeoncarbondotformationstructureandopticalproperties AT titiricimariamagdalena investigatingtheeffectofreactiontimeoncarbondotformationstructureandopticalproperties AT sapelkinandrei investigatingtheeffectofreactiontimeoncarbondotformationstructureandopticalproperties |