Cargando…
IILLS: predicting virus-receptor interactions based on similarity and semi-supervised learning
BACKGROUND: Viral infectious diseases are the serious threat for human health. The receptor-binding is the first step for the viral infection of hosts. To more effectively treat human viral infectious diseases, the hidden virus-receptor interactions must be discovered. However, current computational...
Autores principales: | Yan, Cheng, Duan, Guihua, Wu, Fang-Xiang, Wang, Jianxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933616/ https://www.ncbi.nlm.nih.gov/pubmed/31881820 http://dx.doi.org/10.1186/s12859-019-3278-3 |
Ejemplares similares
-
Predicting the hosts of prokaryotic viruses using GCN-based semi-supervised learning
por: Shang, Jiayu, et al.
Publicado: (2021) -
Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network
por: Chen, Jiarui, et al.
Publicado: (2021) -
Robust identification of molecular phenotypes using semi-supervised learning
por: Roder, Heinrich, et al.
Publicado: (2019) -
PESM: predicting the essentiality of miRNAs based on gradient boosting machines and sequences
por: Yan, Cheng, et al.
Publicado: (2020) -
Semi-supervised consensus clustering for gene expression data analysis
por: Wang, Yunli, et al.
Publicado: (2014)