Cargando…
D3GRN: a data driven dynamic network construction method to infer gene regulatory networks
BACKGROUND: To infer gene regulatory networks (GRNs) from gene-expression data is still a fundamental and challenging problem in systems biology. Several existing algorithms formulate GRNs inference as a regression problem and obtain the network with an ensemble strategy. Recent studies on data driv...
Autores principales: | Chen, Xiang, Li, Min, Zheng, Ruiqing, Wu, Fang-Xiang, Wang, Jianxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933629/ https://www.ncbi.nlm.nih.gov/pubmed/31881937 http://dx.doi.org/10.1186/s12864-019-6298-5 |
Ejemplares similares
-
Editorial: Methods in genome, pan-genome, pan-transcriptome, and gene regulatory network (GRN) construction and analysis
por: Gupta, Parul, et al.
Publicado: (2023) -
PEPN-GRN: A Petri net-based approach for the inference of gene regulatory networks from noisy gene expression data
por: Vatsa, Deepika, et al.
Publicado: (2021) -
Improving GRN re‐construction by mining hidden regulatory signals
por: Shi, Ming, et al.
Publicado: (2017) -
Sig2GRN: a software tool linking signaling pathway with gene regulatory network for dynamic simulation
por: Zhang, Fan, et al.
Publicado: (2016) -
Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks
por: Greenfield, Alex, et al.
Publicado: (2013)