Cargando…
Model-based cell clustering and population tracking for time-series flow cytometry data
BACKGROUND: Modern flow cytometry technology has enabled the simultaneous analysis of multiple cell markers at the single-cell level, and it is widely used in a broad field of research. The detection of cell populations in flow cytometry data has long been dependent on “manual gating” by visual insp...
Autores principales: | Minoura, Kodai, Abe, Ko, Maeda, Yuka, Nishikawa, Hiroyoshi, Shimamura, Teppei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933651/ https://www.ncbi.nlm.nih.gov/pubmed/31881827 http://dx.doi.org/10.1186/s12859-019-3294-3 |
Ejemplares similares
-
Model-based clustering for flow and mass cytometry data with clinical information
por: Abe, Ko, et al.
Publicado: (2020) -
CYBERTRACK2.0: zero-inflated model-based cell clustering and population tracking method for longitudinal mass cytometry data
por: Minoura, Kodai, et al.
Publicado: (2020) -
A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data
por: Minoura, Kodai, et al.
Publicado: (2021) -
Depletion of central memory CD8(+) T cells might impede the antitumor therapeutic effect of Mogamulizumab
por: Maeda, Yuka, et al.
Publicado: (2021) -
Multiplex Cell Fate Tracking by Flow Cytometry
por: Rodríguez-Martínez, Marta, et al.
Publicado: (2020)