Cargando…
Old drug repositioning and new drug discovery through similarity learning from drug-target joint feature spaces
BACKGROUND: Detection of new drug-target interactions by computational algorithms is of crucial value to both old drug repositioning and new drug discovery. Existing machine-learning methods rely only on experimentally validated drug-target interactions (i.e., positive samples) for the predictions....
Autores principales: | Zheng, Yi, Peng, Hui, Zhang, Xiaocai, Zhao, Zhixun, Gao, Xiaoying, Li, Jinyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933655/ https://www.ncbi.nlm.nih.gov/pubmed/31881829 http://dx.doi.org/10.1186/s12859-019-3238-y |
Ejemplares similares
-
DDI-PULearn: a positive-unlabeled learning method for large-scale prediction of drug-drug interactions
por: Zheng, Yi, et al.
Publicado: (2019) -
Drug repositioning in drug discovery of T2DM and repositioning potential of antidiabetic agents
por: Zhu, Sha, et al.
Publicado: (2022) -
MeSHDD: Literature-based drug-drug similarity for drug repositioning
por: Brown, Adam S, et al.
Publicado: (2017) -
DrugCentral 2021 supports drug discovery and repositioning
por: Avram, Sorin, et al.
Publicado: (2020) -
Guiding Drug Repositioning for Cancers Based on Drug Similarity Networks
por: Qin, Shimei, et al.
Publicado: (2023)