Cargando…
DeepMF: deciphering the latent patterns in omics profiles with a deep learning method
BACKGROUND: With recent advances in high-throughput technologies, matrix factorization techniques are increasingly being utilized for mapping quantitative omics profiling matrix data into low-dimensional embedding space, in the hope of uncovering insights in the underlying biological processes. Neve...
Autores principales: | Chen, Lingxi, Xu, Jiao, Li, Shuai Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933662/ https://www.ncbi.nlm.nih.gov/pubmed/31881818 http://dx.doi.org/10.1186/s12859-019-3291-6 |
Ejemplares similares
-
SCYN: single cell CNV profiling method using dynamic programming
por: Feng, Xikang, et al.
Publicado: (2021) -
DeepFlower: a deep learning-based approach to characterize flowering patterns of cotton plants in the field
por: Jiang, Yu, et al.
Publicado: (2020) -
Deep phenotyping: deep learning for temporal phenotype/genotype classification
por: Taghavi Namin, Sarah, et al.
Publicado: (2018) -
Deep learning methods for protein torsion angle prediction
por: Li, Haiou, et al.
Publicado: (2017) -
Deep learning methods improve linear B-cell epitope prediction
por: Liu, Tao, et al.
Publicado: (2020)