Cargando…
Integrated Cancer Subtyping using Heterogeneous Genome-Scale Molecular Datasets
Vast repositories of heterogeneous data from existing sources present unique opportunities. Taken individually, each of the datasets offers solutions to important domain and source-specific questions. Collectively, they represent complementary views of related data entities with an aggregate informa...
Autores principales: | Arslanturk, Suzan, Draghici, Sorin, Nguyen, Tin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933742/ https://www.ncbi.nlm.nih.gov/pubmed/31797627 |
Ejemplares similares
-
Integration of Multimodal Data from Disparate Sources for Identifying Disease Subtypes
por: Zhou, Kaiyue, et al.
Publicado: (2022) -
Discovery of primary prostate cancer biomarkers using cross cancer learning
por: Zhou, Kaiyue, et al.
Publicado: (2021) -
A novel approach for data integration and disease subtyping
por: Nguyen, Tin, et al.
Publicado: (2017) -
SMRT: Randomized Data Transformation for Cancer Subtyping and Big Data Analysis
por: Nguyen, Hung, et al.
Publicado: (2021) -
Overcoming the matched-sample bottleneck: an orthogonal approach to integrate omic data
por: Nguyen, Tin, et al.
Publicado: (2016)