Cargando…

Molecular Nanomachines Disrupt Bacterial Cell Wall, Increasing Sensitivity of Extensively Drug-Resistant Klebsiella pneumoniae to Meropenem

[Image: see text] Multidrug resistance in pathogenic bacteria is an increasing problem in patient care and public health. Molecular nanomachines (MNMs) have the ability to open cell membranes using nanomechanical action. We hypothesized that MNMs could be used as antibacterial agents by drilling int...

Descripción completa

Detalles Bibliográficos
Autores principales: Galbadage, Thushara, Liu, Dongdong, Alemany, Lawrence B., Pal, Robert, Tour, James M., Gunasekera, Richard S., Cirillo, Jeffrey D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933815/
https://www.ncbi.nlm.nih.gov/pubmed/31815423
http://dx.doi.org/10.1021/acsnano.9b07836
_version_ 1783483286309306368
author Galbadage, Thushara
Liu, Dongdong
Alemany, Lawrence B.
Pal, Robert
Tour, James M.
Gunasekera, Richard S.
Cirillo, Jeffrey D.
author_facet Galbadage, Thushara
Liu, Dongdong
Alemany, Lawrence B.
Pal, Robert
Tour, James M.
Gunasekera, Richard S.
Cirillo, Jeffrey D.
author_sort Galbadage, Thushara
collection PubMed
description [Image: see text] Multidrug resistance in pathogenic bacteria is an increasing problem in patient care and public health. Molecular nanomachines (MNMs) have the ability to open cell membranes using nanomechanical action. We hypothesized that MNMs could be used as antibacterial agents by drilling into bacterial cell walls and increasing susceptibility of drug-resistant bacteria to recently ineffective antibiotics. We exposed extensively drug-resistant Klebsiella pneumoniae to light-activated MNMs and found that MNMs increase the susceptibility to Meropenem. MNMs with Meropenem can effectively kill K. pneumoniae that are considered Meropenem-resistant. We examined the mechanisms of MNM action using permeability assays and transmission electron microscopy, finding that MNMs disrupt the cell wall of extensively drug-resistant K. pneumoniae, exposing the bacteria to Meropenem. These observations suggest that MNMs could be used to make conventional antibiotics more efficacious against multi-drug-resistant pathogens.
format Online
Article
Text
id pubmed-6933815
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-69338152019-12-30 Molecular Nanomachines Disrupt Bacterial Cell Wall, Increasing Sensitivity of Extensively Drug-Resistant Klebsiella pneumoniae to Meropenem Galbadage, Thushara Liu, Dongdong Alemany, Lawrence B. Pal, Robert Tour, James M. Gunasekera, Richard S. Cirillo, Jeffrey D. ACS Nano [Image: see text] Multidrug resistance in pathogenic bacteria is an increasing problem in patient care and public health. Molecular nanomachines (MNMs) have the ability to open cell membranes using nanomechanical action. We hypothesized that MNMs could be used as antibacterial agents by drilling into bacterial cell walls and increasing susceptibility of drug-resistant bacteria to recently ineffective antibiotics. We exposed extensively drug-resistant Klebsiella pneumoniae to light-activated MNMs and found that MNMs increase the susceptibility to Meropenem. MNMs with Meropenem can effectively kill K. pneumoniae that are considered Meropenem-resistant. We examined the mechanisms of MNM action using permeability assays and transmission electron microscopy, finding that MNMs disrupt the cell wall of extensively drug-resistant K. pneumoniae, exposing the bacteria to Meropenem. These observations suggest that MNMs could be used to make conventional antibiotics more efficacious against multi-drug-resistant pathogens. American Chemical Society 2019-12-09 2019-12-24 /pmc/articles/PMC6933815/ /pubmed/31815423 http://dx.doi.org/10.1021/acsnano.9b07836 Text en Copyright © 2019 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Galbadage, Thushara
Liu, Dongdong
Alemany, Lawrence B.
Pal, Robert
Tour, James M.
Gunasekera, Richard S.
Cirillo, Jeffrey D.
Molecular Nanomachines Disrupt Bacterial Cell Wall, Increasing Sensitivity of Extensively Drug-Resistant Klebsiella pneumoniae to Meropenem
title Molecular Nanomachines Disrupt Bacterial Cell Wall, Increasing Sensitivity of Extensively Drug-Resistant Klebsiella pneumoniae to Meropenem
title_full Molecular Nanomachines Disrupt Bacterial Cell Wall, Increasing Sensitivity of Extensively Drug-Resistant Klebsiella pneumoniae to Meropenem
title_fullStr Molecular Nanomachines Disrupt Bacterial Cell Wall, Increasing Sensitivity of Extensively Drug-Resistant Klebsiella pneumoniae to Meropenem
title_full_unstemmed Molecular Nanomachines Disrupt Bacterial Cell Wall, Increasing Sensitivity of Extensively Drug-Resistant Klebsiella pneumoniae to Meropenem
title_short Molecular Nanomachines Disrupt Bacterial Cell Wall, Increasing Sensitivity of Extensively Drug-Resistant Klebsiella pneumoniae to Meropenem
title_sort molecular nanomachines disrupt bacterial cell wall, increasing sensitivity of extensively drug-resistant klebsiella pneumoniae to meropenem
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933815/
https://www.ncbi.nlm.nih.gov/pubmed/31815423
http://dx.doi.org/10.1021/acsnano.9b07836
work_keys_str_mv AT galbadagethushara molecularnanomachinesdisruptbacterialcellwallincreasingsensitivityofextensivelydrugresistantklebsiellapneumoniaetomeropenem
AT liudongdong molecularnanomachinesdisruptbacterialcellwallincreasingsensitivityofextensivelydrugresistantklebsiellapneumoniaetomeropenem
AT alemanylawrenceb molecularnanomachinesdisruptbacterialcellwallincreasingsensitivityofextensivelydrugresistantklebsiellapneumoniaetomeropenem
AT palrobert molecularnanomachinesdisruptbacterialcellwallincreasingsensitivityofextensivelydrugresistantklebsiellapneumoniaetomeropenem
AT tourjamesm molecularnanomachinesdisruptbacterialcellwallincreasingsensitivityofextensivelydrugresistantklebsiellapneumoniaetomeropenem
AT gunasekerarichards molecularnanomachinesdisruptbacterialcellwallincreasingsensitivityofextensivelydrugresistantklebsiellapneumoniaetomeropenem
AT cirillojeffreyd molecularnanomachinesdisruptbacterialcellwallincreasingsensitivityofextensivelydrugresistantklebsiellapneumoniaetomeropenem