Cargando…
Genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset Alzheimer’s disease
BACKGROUND: New genetic and genomic resources have identified multiple genetic risk factors for late-onset Alzheimer’s disease (LOAD) and characterized this common dementia at the molecular level. Experimental studies in model organisms can validate these associations and elucidate the links between...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933917/ https://www.ncbi.nlm.nih.gov/pubmed/31878951 http://dx.doi.org/10.1186/s13024-019-0351-3 |
_version_ | 1783483303591936000 |
---|---|
author | Pandey, Ravi S. Graham, Leah Uyar, Asli Preuss, Christoph Howell, Gareth R. Carter, Gregory W. |
author_facet | Pandey, Ravi S. Graham, Leah Uyar, Asli Preuss, Christoph Howell, Gareth R. Carter, Gregory W. |
author_sort | Pandey, Ravi S. |
collection | PubMed |
description | BACKGROUND: New genetic and genomic resources have identified multiple genetic risk factors for late-onset Alzheimer’s disease (LOAD) and characterized this common dementia at the molecular level. Experimental studies in model organisms can validate these associations and elucidate the links between specific genetic factors and transcriptomic signatures. Animal models based on LOAD-associated genes can potentially connect common genetic variation with LOAD transcriptomes, thereby providing novel insights into basic biological mechanisms underlying the disease. METHODS: We performed RNA-Seq on whole brain samples from a panel of six-month-old female mice, each carrying one of the following mutations: homozygous deletions of Apoe and Clu; hemizygous deletions of Bin1 and Cd2ap; and a transgenic APOEε4. Similar data from a transgenic APP/PS1 model was included for comparison to early-onset variant effects. Weighted gene co-expression network analysis (WGCNA) was used to identify modules of correlated genes and each module was tested for differential expression by strain. We then compared mouse modules with human postmortem brain modules from the Accelerating Medicine’s Partnership for AD (AMP-AD) to determine the LOAD-related processes affected by each genetic risk factor. RESULTS: Mouse modules were significantly enriched in multiple AD-related processes, including immune response, inflammation, lipid processing, endocytosis, and synaptic cell function. WGCNA modules were significantly associated with Apoe(−/−), APOEε4, Clu(−/−), and APP/PS1 mouse models. Apoe(−/−), GFAP-driven APOEε4, and APP/PS1 driven modules overlapped with AMP-AD inflammation and microglial modules; Clu(−/−) driven modules overlapped with synaptic modules; and APP/PS1 modules separately overlapped with lipid-processing and metabolism modules. CONCLUSIONS: This study of genetic mouse models provides a basis to dissect the role of AD risk genes in relevant AD pathologies. We determined that different genetic perturbations affect different molecular mechanisms comprising AD, and mapped specific effects to each risk gene. Our approach provides a platform for further exploration into the causes and progression of AD by assessing animal models at different ages and/or with different combinations of LOAD risk variants. |
format | Online Article Text |
id | pubmed-6933917 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-69339172019-12-30 Genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset Alzheimer’s disease Pandey, Ravi S. Graham, Leah Uyar, Asli Preuss, Christoph Howell, Gareth R. Carter, Gregory W. Mol Neurodegener Research Article BACKGROUND: New genetic and genomic resources have identified multiple genetic risk factors for late-onset Alzheimer’s disease (LOAD) and characterized this common dementia at the molecular level. Experimental studies in model organisms can validate these associations and elucidate the links between specific genetic factors and transcriptomic signatures. Animal models based on LOAD-associated genes can potentially connect common genetic variation with LOAD transcriptomes, thereby providing novel insights into basic biological mechanisms underlying the disease. METHODS: We performed RNA-Seq on whole brain samples from a panel of six-month-old female mice, each carrying one of the following mutations: homozygous deletions of Apoe and Clu; hemizygous deletions of Bin1 and Cd2ap; and a transgenic APOEε4. Similar data from a transgenic APP/PS1 model was included for comparison to early-onset variant effects. Weighted gene co-expression network analysis (WGCNA) was used to identify modules of correlated genes and each module was tested for differential expression by strain. We then compared mouse modules with human postmortem brain modules from the Accelerating Medicine’s Partnership for AD (AMP-AD) to determine the LOAD-related processes affected by each genetic risk factor. RESULTS: Mouse modules were significantly enriched in multiple AD-related processes, including immune response, inflammation, lipid processing, endocytosis, and synaptic cell function. WGCNA modules were significantly associated with Apoe(−/−), APOEε4, Clu(−/−), and APP/PS1 mouse models. Apoe(−/−), GFAP-driven APOEε4, and APP/PS1 driven modules overlapped with AMP-AD inflammation and microglial modules; Clu(−/−) driven modules overlapped with synaptic modules; and APP/PS1 modules separately overlapped with lipid-processing and metabolism modules. CONCLUSIONS: This study of genetic mouse models provides a basis to dissect the role of AD risk genes in relevant AD pathologies. We determined that different genetic perturbations affect different molecular mechanisms comprising AD, and mapped specific effects to each risk gene. Our approach provides a platform for further exploration into the causes and progression of AD by assessing animal models at different ages and/or with different combinations of LOAD risk variants. BioMed Central 2019-12-26 /pmc/articles/PMC6933917/ /pubmed/31878951 http://dx.doi.org/10.1186/s13024-019-0351-3 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Pandey, Ravi S. Graham, Leah Uyar, Asli Preuss, Christoph Howell, Gareth R. Carter, Gregory W. Genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset Alzheimer’s disease |
title | Genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset Alzheimer’s disease |
title_full | Genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset Alzheimer’s disease |
title_fullStr | Genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset Alzheimer’s disease |
title_full_unstemmed | Genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset Alzheimer’s disease |
title_short | Genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset Alzheimer’s disease |
title_sort | genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset alzheimer’s disease |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6933917/ https://www.ncbi.nlm.nih.gov/pubmed/31878951 http://dx.doi.org/10.1186/s13024-019-0351-3 |
work_keys_str_mv | AT pandeyravis geneticperturbationsofdiseaseriskgenesinmicecapturetranscriptomicsignaturesoflateonsetalzheimersdisease AT grahamleah geneticperturbationsofdiseaseriskgenesinmicecapturetranscriptomicsignaturesoflateonsetalzheimersdisease AT uyarasli geneticperturbationsofdiseaseriskgenesinmicecapturetranscriptomicsignaturesoflateonsetalzheimersdisease AT preusschristoph geneticperturbationsofdiseaseriskgenesinmicecapturetranscriptomicsignaturesoflateonsetalzheimersdisease AT howellgarethr geneticperturbationsofdiseaseriskgenesinmicecapturetranscriptomicsignaturesoflateonsetalzheimersdisease AT cartergregoryw geneticperturbationsofdiseaseriskgenesinmicecapturetranscriptomicsignaturesoflateonsetalzheimersdisease |