Cargando…

Effects of treated wastewater on the ecotoxicity of small streams – Unravelling the contribution of chemicals causing effects

Wastewater treatment plant effluents are important point sources of micropollutants. To assess how the discharge of treated wastewater affects the ecotoxicity of small to medium-sized streams we collected water samples up- and downstream of 24 wastewater treatment plants across the Swiss Plateau and...

Descripción completa

Detalles Bibliográficos
Autores principales: Kienle, Cornelia, Vermeirssen, Etiënne L. M., Schifferli, Andrea, Singer, Heinz, Stamm, Christian, Werner, Inge
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934383/
https://www.ncbi.nlm.nih.gov/pubmed/31881027
http://dx.doi.org/10.1371/journal.pone.0226278
Descripción
Sumario:Wastewater treatment plant effluents are important point sources of micropollutants. To assess how the discharge of treated wastewater affects the ecotoxicity of small to medium-sized streams we collected water samples up- and downstream of 24 wastewater treatment plants across the Swiss Plateau and the Jura regions of Switzerland. We investigated estrogenicity, inhibition of algal photosynthetic activity (photosystem II, PSII) and growth, and acetylcholinesterase (AChE) inhibition. At four sites, we measured feeding activity of amphipods (Gammarus fossarum) in situ as well as water flea (Ceriodaphnia dubia) reproduction in water samples. Ecotoxicological endpoints were compared with results from analyses of general water quality parameters as well as a target screening of a wide range of organic micropollutants with a focus on pesticides and pharmaceuticals using liquid chromatography high-resolution tandem mass spectrometry. Measured ecotoxicological effects in stream water varied substantially among sites: 17β-estradiol equivalent concentrations (EEQ(bio), indicating the degree of estrogenicity) were relatively low and ranged from 0.04 to 0.85 ng/L, never exceeding a proposed effect-based trigger (EBT) value of 0.88 ng/L. Diuron equivalent (DEQ(bio)) concentrations (indicating the degree of photosystem II inhibition in algae) ranged from 2.4 to 1576 ng/L and exceeded the EBT value (70 ng/L) in one third of the rivers studied, sometimes even upstream of the WWTP. Parathion equivalent (PtEQ(bio)) concentrations (indicating the degree of AChE inhibition) reached relatively high values (37 to 1278 ng/L) mostly exceeding the corresponding EBT (196 ng/L PtEQ(bio)). Decreased feeding activity by amphipods or decreased water flea reproduction downstream compared to the upstream site was observed at one of four investigated sites only. Results of the combined algae assay (PSII inhibition) correlated best with results of chemical analysis for PSII inhibiting herbicides. Estrogenicity was partly and AChE inhibition strongly underestimated based on measured steroidal estrogens respectively organophosphate and carbamate insecticides. An impact of dissolved organic carbon on results of the AChE inhibition assay was obvious. For this assay more work is required to further explore the missing correlation of bioassay data with chemical analytical data. Overall, the discharge of WWTP effluent led to increased estrogenicity, PSII and AChE inhibition downstream, irrespective of upstream land use.