Cargando…
Effect of nicotine on Staphylococcus aureus biofilm formation and virulence factors
Staphylococcus aureus is a common pathogen in chronic rhinosinusitis (CRS) patients, the pathogenesis of which involves the ability to form biofilms and produce various virulence factors. Tobacco smoke, another risk factor of CRS, facilitates S. aureus biofilm formation; however, the mechanisms invo...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934519/ https://www.ncbi.nlm.nih.gov/pubmed/31882881 http://dx.doi.org/10.1038/s41598-019-56627-0 |
Sumario: | Staphylococcus aureus is a common pathogen in chronic rhinosinusitis (CRS) patients, the pathogenesis of which involves the ability to form biofilms and produce various virulence factors. Tobacco smoke, another risk factor of CRS, facilitates S. aureus biofilm formation; however, the mechanisms involved are unclear. Here, we studied the effect of nicotine on S. aureus biofilm formation and the expression of virulence-related genes. S. aureus strains isolated from CRS patients and a USA300 strain were treated with nicotine or were untreated (control). Nicotine-treated S. aureus strains showed dose-dependent increases in biofilm formation, lower virulence, enhanced initial attachment, increased extracellular DNA release, and a higher autolysis rate, involving dysregulation of the accessory gene regulator (Agr) quorum-sensing system. Consequently, the expression of autolysis-related genes lytN and atlA, and the percentage of dead cells in biofilms was increased. However, the expression of virulence-related genes, including hla, hlb, pvl, nuc, ssp, spa, sigB, coa, and crtN was downregulated and there was reduced bacterial invasion of A549 human alveolar epithelial cells. The results of this study indicate that nicotine treatment enhances S. aureus biofilm formation by promoting initial attachment and extracellular DNA release but inhibits the virulence of this bacterium. |
---|