Cargando…

Recombinant HIV-1 vaccine candidates based on replication-defective flavivirus vector

Multiple approaches utilizing viral and DNA vectors have shown promise in the development of an effective vaccine against HIV. In this study, an alternative replication-defective flavivirus vector, RepliVax (RV), was evaluated for the delivery of HIV-1 immunogens. Recombinant RV-HIV viruses were eng...

Descripción completa

Detalles Bibliográficos
Autores principales: Giel-Moloney, M., Esteban, M., Oakes, B. H., Vaine, M., Asbach, B., Wagner, R., Mize, G. J., Spies, A. G., McElrath, J., Perreau, M., Roger, T., Ives, A., Calandra, T., Weiss, D., Perdiguero, B., Kibler, K. V., Jacobs, B., Ding, S., Tomaras, G. D., Montefiori, D. C., Ferrari, G., Yates, N. L., Roederer, M., Kao, S. F., Foulds, K. E., Mayer, B. T., Bennett, C., Gottardo, R., Parrington, M., Tartaglia, J., Phogat, S., Pantaleo, G., Kleanthous, H., Pugachev, K. V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934588/
https://www.ncbi.nlm.nih.gov/pubmed/31882800
http://dx.doi.org/10.1038/s41598-019-56550-4
_version_ 1783483417788153856
author Giel-Moloney, M.
Esteban, M.
Oakes, B. H.
Vaine, M.
Asbach, B.
Wagner, R.
Mize, G. J.
Spies, A. G.
McElrath, J.
Perreau, M.
Roger, T.
Ives, A.
Calandra, T.
Weiss, D.
Perdiguero, B.
Kibler, K. V.
Jacobs, B.
Ding, S.
Tomaras, G. D.
Montefiori, D. C.
Ferrari, G.
Yates, N. L.
Roederer, M.
Kao, S. F.
Foulds, K. E.
Mayer, B. T.
Bennett, C.
Gottardo, R.
Parrington, M.
Tartaglia, J.
Phogat, S.
Pantaleo, G.
Kleanthous, H.
Pugachev, K. V.
author_facet Giel-Moloney, M.
Esteban, M.
Oakes, B. H.
Vaine, M.
Asbach, B.
Wagner, R.
Mize, G. J.
Spies, A. G.
McElrath, J.
Perreau, M.
Roger, T.
Ives, A.
Calandra, T.
Weiss, D.
Perdiguero, B.
Kibler, K. V.
Jacobs, B.
Ding, S.
Tomaras, G. D.
Montefiori, D. C.
Ferrari, G.
Yates, N. L.
Roederer, M.
Kao, S. F.
Foulds, K. E.
Mayer, B. T.
Bennett, C.
Gottardo, R.
Parrington, M.
Tartaglia, J.
Phogat, S.
Pantaleo, G.
Kleanthous, H.
Pugachev, K. V.
author_sort Giel-Moloney, M.
collection PubMed
description Multiple approaches utilizing viral and DNA vectors have shown promise in the development of an effective vaccine against HIV. In this study, an alternative replication-defective flavivirus vector, RepliVax (RV), was evaluated for the delivery of HIV-1 immunogens. Recombinant RV-HIV viruses were engineered to stably express clade C virus Gag and Env (gp120TM) proteins and propagated in Vero helper cells. RV-based vectors enabled efficient expression and correct maturation of Gag and gp120TM proteins, were apathogenic in a sensitive suckling mouse neurovirulence test, and were similar in immunogenicity to recombinant poxvirus NYVAC-HIV vectors in homologous or heterologous prime-boost combinations in mice. In a pilot NHP study, immunogenicity of RV-HIV viruses used as a prime or boost for DNA or NYVAC candidates was compared to a DNA prime/NYVAC boost benchmark scheme when administered together with adjuvanted gp120 protein. Similar neutralizing antibody titers, binding IgG titers measured against a broad panel of Env and Gag antigens, and ADCC responses were observed in the groups throughout the course of the study, and T cell responses were elicited. The entire data demonstrate that RV vectors have the potential as novel HIV-1 vaccine components for use in combination with other promising candidates to develop new effective vaccination strategies.
format Online
Article
Text
id pubmed-6934588
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-69345882019-12-29 Recombinant HIV-1 vaccine candidates based on replication-defective flavivirus vector Giel-Moloney, M. Esteban, M. Oakes, B. H. Vaine, M. Asbach, B. Wagner, R. Mize, G. J. Spies, A. G. McElrath, J. Perreau, M. Roger, T. Ives, A. Calandra, T. Weiss, D. Perdiguero, B. Kibler, K. V. Jacobs, B. Ding, S. Tomaras, G. D. Montefiori, D. C. Ferrari, G. Yates, N. L. Roederer, M. Kao, S. F. Foulds, K. E. Mayer, B. T. Bennett, C. Gottardo, R. Parrington, M. Tartaglia, J. Phogat, S. Pantaleo, G. Kleanthous, H. Pugachev, K. V. Sci Rep Article Multiple approaches utilizing viral and DNA vectors have shown promise in the development of an effective vaccine against HIV. In this study, an alternative replication-defective flavivirus vector, RepliVax (RV), was evaluated for the delivery of HIV-1 immunogens. Recombinant RV-HIV viruses were engineered to stably express clade C virus Gag and Env (gp120TM) proteins and propagated in Vero helper cells. RV-based vectors enabled efficient expression and correct maturation of Gag and gp120TM proteins, were apathogenic in a sensitive suckling mouse neurovirulence test, and were similar in immunogenicity to recombinant poxvirus NYVAC-HIV vectors in homologous or heterologous prime-boost combinations in mice. In a pilot NHP study, immunogenicity of RV-HIV viruses used as a prime or boost for DNA or NYVAC candidates was compared to a DNA prime/NYVAC boost benchmark scheme when administered together with adjuvanted gp120 protein. Similar neutralizing antibody titers, binding IgG titers measured against a broad panel of Env and Gag antigens, and ADCC responses were observed in the groups throughout the course of the study, and T cell responses were elicited. The entire data demonstrate that RV vectors have the potential as novel HIV-1 vaccine components for use in combination with other promising candidates to develop new effective vaccination strategies. Nature Publishing Group UK 2019-12-27 /pmc/articles/PMC6934588/ /pubmed/31882800 http://dx.doi.org/10.1038/s41598-019-56550-4 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Giel-Moloney, M.
Esteban, M.
Oakes, B. H.
Vaine, M.
Asbach, B.
Wagner, R.
Mize, G. J.
Spies, A. G.
McElrath, J.
Perreau, M.
Roger, T.
Ives, A.
Calandra, T.
Weiss, D.
Perdiguero, B.
Kibler, K. V.
Jacobs, B.
Ding, S.
Tomaras, G. D.
Montefiori, D. C.
Ferrari, G.
Yates, N. L.
Roederer, M.
Kao, S. F.
Foulds, K. E.
Mayer, B. T.
Bennett, C.
Gottardo, R.
Parrington, M.
Tartaglia, J.
Phogat, S.
Pantaleo, G.
Kleanthous, H.
Pugachev, K. V.
Recombinant HIV-1 vaccine candidates based on replication-defective flavivirus vector
title Recombinant HIV-1 vaccine candidates based on replication-defective flavivirus vector
title_full Recombinant HIV-1 vaccine candidates based on replication-defective flavivirus vector
title_fullStr Recombinant HIV-1 vaccine candidates based on replication-defective flavivirus vector
title_full_unstemmed Recombinant HIV-1 vaccine candidates based on replication-defective flavivirus vector
title_short Recombinant HIV-1 vaccine candidates based on replication-defective flavivirus vector
title_sort recombinant hiv-1 vaccine candidates based on replication-defective flavivirus vector
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934588/
https://www.ncbi.nlm.nih.gov/pubmed/31882800
http://dx.doi.org/10.1038/s41598-019-56550-4
work_keys_str_mv AT gielmoloneym recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT estebanm recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT oakesbh recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT vainem recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT asbachb recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT wagnerr recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT mizegj recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT spiesag recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT mcelrathj recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT perreaum recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT rogert recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT ivesa recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT calandrat recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT weissd recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT perdiguerob recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT kiblerkv recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT jacobsb recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT dings recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT tomarasgd recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT montefioridc recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT ferrarig recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT yatesnl recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT roedererm recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT kaosf recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT fouldske recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT mayerbt recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT bennettc recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT gottardor recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT parringtonm recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT tartagliaj recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT phogats recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT pantaleog recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT kleanthoush recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector
AT pugachevkv recombinanthiv1vaccinecandidatesbasedonreplicationdefectiveflavivirusvector