Cargando…
Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction from Plain Radiographs and Clinical Data
Knee osteoarthritis (OA) is the most common musculoskeletal disease without a cure, and current treatment options are limited to symptomatic relief. Prediction of OA progression is a very challenging and timely issue, and it could, if resolved, accelerate the disease modifying drug development and u...
Autores principales: | Tiulpin, Aleksei, Klein, Stefan, Bierma-Zeinstra, Sita M. A., Thevenot, Jérôme, Rahtu, Esa, Meurs, Joyce van, Oei, Edwin H. G., Saarakkala, Simo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934728/ https://www.ncbi.nlm.nih.gov/pubmed/31882803 http://dx.doi.org/10.1038/s41598-019-56527-3 |
Ejemplares similares
-
Automatic Knee Osteoarthritis Diagnosis from Plain Radiographs: A Deep Learning-Based Approach
por: Tiulpin, Aleksei, et al.
Publicado: (2018) -
Automatic Grading of Individual Knee Osteoarthritis Features in Plain Radiographs Using Deep Convolutional Neural Networks
por: Tiulpin, Aleksei, et al.
Publicado: (2020) -
Acoustic emissions and kinematic instability of the osteoarthritic knee joint: comparison with radiographic findings
por: Nevalainen, Mika T., et al.
Publicado: (2021) -
Bone Density and Texture from Minimally Post-Processed Knee Radiographs in Subjects with Knee Osteoarthritis
por: Hirvasniemi, Jukka, et al.
Publicado: (2019) -
Medial Cartilage Surface Integrity as a Surrogate Measure for
Incident Radiographic Knee Osteoarthritis following Weight
Changes
por: Runhaar, Jos, et al.
Publicado: (2019)