Cargando…
Integrative Deep Learning for Identifying Differentially Expressed (DE) Biomarkers
As a large amount of genetic data are accumulated, an effective analytical method and a significant interpretation are required. Recently, various methods of machine learning have emerged to process genetic data. In addition, machine learning analysis tools using statistical models have been propose...
Autores principales: | Lim, Jayeon, Bang, SoYoun, Kim, Jiyeon, Park, Cheolyong, Cho, JunSang, Kim, SungHwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6935456/ https://www.ncbi.nlm.nih.gov/pubmed/31915462 http://dx.doi.org/10.1155/2019/8418760 |
Ejemplares similares
-
Meta-analytic support vector machine for integrating multiple omics data
por: Kim, SungHwan, et al.
Publicado: (2017) -
Comprehensive Metabolomic Search for Biomarkers to Differentiate Early Stage Hepatocellular Carcinoma from Cirrhosis
por: Kim, Da Jung, et al.
Publicado: (2019) -
Erratum to: Meta-analytic support vector machine for integrating multiple omics data
por: Kim, SungHwan, et al.
Publicado: (2017) -
Weighted K-means support vector machine for cancer prediction
por: Kim, SungHwan
Publicado: (2016) -
Differential White Matter Connectivity in Early Mild Cognitive Impairment According to CSF Biomarkers
por: Lim, Jae-Sung, et al.
Publicado: (2014)