Cargando…
Revealing Dynamic Mechanisms of Cell Fate Decisions From Single-Cell Transcriptomic Data
Cell fate decisions play a pivotal role in development, but technologies for dissecting them are limited. We developed a multifunction new method, Topographer, to construct a “quantitative” Waddington’s landscape of single-cell transcriptomic data. This method is able to identify complex cell-state...
Autores principales: | Zhang, Jiajun, Nie, Qing, Zhou, Tianshou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6935941/ https://www.ncbi.nlm.nih.gov/pubmed/31921315 http://dx.doi.org/10.3389/fgene.2019.01280 |
Ejemplares similares
-
Machine Learning of Single Cell Transcriptomic Data From anti-PD-1 Responders and Non-responders Reveals Distinct Resistance Mechanisms in Skin Cancers and PDAC
por: Liu, Ryan, et al.
Publicado: (2022) -
Single-Cell Transcriptome Analysis Reveals Six Subpopulations Reflecting Distinct Cellular Fates in Senescent Mouse Embryonic Fibroblasts
por: Chen, Wei, et al.
Publicado: (2020) -
Inference of Intercellular Communications and Multilayer Gene-Regulations of Epithelial–Mesenchymal Transition From Single-Cell Transcriptomic Data
por: Sha, Yutong, et al.
Publicado: (2021) -
DEEPsc: A Deep Learning-Based Map Connecting Single-Cell Transcriptomics and Spatial Imaging Data
por: Maseda, Floyd, et al.
Publicado: (2021) -
Understanding the Cellular and Molecular Mechanisms That Control Early Cell Fate Decisions During Appendicular Skeletogenesis
por: Marín-Llera, Jessica Cristina, et al.
Publicado: (2019)