Cargando…
PCA via joint graph Laplacian and sparse constraint: Identification of differentially expressed genes and sample clustering on gene expression data
BACKGROUND: In recent years, identification of differentially expressed genes and sample clustering have become hot topics in bioinformatics. Principal Component Analysis (PCA) is a widely used method in gene expression data. However, it has two limitations: first, the geometric structure hidden in...
Autores principales: | Feng, Chun-Mei, Xu, Yong, Hou, Mi-Xiao, Dai, Ling-Yun, Shang, Jun-Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936054/ https://www.ncbi.nlm.nih.gov/pubmed/31888433 http://dx.doi.org/10.1186/s12859-019-3229-z |
Ejemplares similares
-
Joint L(1/2)-Norm Constraint and Graph-Laplacian PCA Method for Feature Extraction
por: Feng, Chun-Mei, et al.
Publicado: (2017) -
Joint Lp-Norm and L(2,1)-Norm Constrained Graph Laplacian PCA for Robust Tumor Sample Clustering and Gene Network Module Discovery
por: Kong, Xiang-Zhen, et al.
Publicado: (2021) -
Laplacian Estrada and Normalized Laplacian Estrada Indices of Evolving Graphs
por: Shang, Yilun
Publicado: (2015) -
Multi-cancer samples clustering via graph regularized low-rank representation method under sparse and symmetric constraints
por: Wang, Juan, et al.
Publicado: (2019) -
Hyperspectral image spectral-spatial classification via weighted Laplacian smoothing constraint-based sparse representation
por: Chen, Eryang, et al.
Publicado: (2021)