Cargando…
SMaSH: Sample matching using SNPs in humans
BACKGROUND: Inadvertent sample swaps are a real threat to data quality in any medium to large scale omics studies. While matches between samples from the same individual can in principle be identified from a few well characterized single nucleotide polymorphisms (SNPs), omics data types often only p...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936078/ https://www.ncbi.nlm.nih.gov/pubmed/31888490 http://dx.doi.org/10.1186/s12864-019-6332-7 |
Sumario: | BACKGROUND: Inadvertent sample swaps are a real threat to data quality in any medium to large scale omics studies. While matches between samples from the same individual can in principle be identified from a few well characterized single nucleotide polymorphisms (SNPs), omics data types often only provide low to moderate coverage, thus requiring integration of evidence from a large number of SNPs to determine if two samples derive from the same individual or not. METHODS: We select about six thousand SNPs in the human genome and develop a Bayesian framework that is able to robustly identify sample matches between next generation sequencing data sets. RESULTS: We validate our approach on a variety of data sets. Most importantly, we show that our approach can establish identity between different omics data types such as Exome, RNA-Seq, and MethylCap-Seq. We demonstrate how identity detection degrades with sample quality and read coverage, but show that twenty million reads of a fairly low quality RNA-Seq sample are still sufficient for reliable sample identification. CONCLUSION: Our tool, SMASH, is able to identify sample mismatches in next generation sequencing data sets between different sequencing modalities and for low quality sequencing data. |
---|