Cargando…
Multi-cancer samples clustering via graph regularized low-rank representation method under sparse and symmetric constraints
BACKGROUND: Identifying different types of cancer based on gene expression data has become hotspot in bioinformatics research. Clustering cancer gene expression data from multiple cancers to their own class is a significance solution. However, the characteristics of high-dimensional and small sample...
Autores principales: | Wang, Juan, Lu, Cong-Hai, Liu, Jin-Xing, Dai, Ling-Yun, Kong, Xiang-Zhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936083/ https://www.ncbi.nlm.nih.gov/pubmed/31888442 http://dx.doi.org/10.1186/s12859-019-3231-5 |
Ejemplares similares
-
Non-Negative Symmetric Low-Rank Representation Graph Regularized Method for Cancer Clustering Based on Score Function
por: Lu, Conghai, et al.
Publicado: (2020) -
Multi-view manifold regularized compact low-rank representation for cancer samples clustering on multi-omics data
por: Wang, Juan, et al.
Publicado: (2022) -
Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
por: Li, Shicheng, et al.
Publicado: (2021) -
Zero-symmetric graphs: trivalent graphical regular representations of groups
por: Coxeter, H S M, et al.
Publicado: (1981) -
Brain Lesion Segmentation Based on Joint Constraints of Low-Rank Representation and Sparse Representation
por: Ge, Ting, et al.
Publicado: (2019)