Cargando…
Prediction of comorbid diseases using weighted geometric embedding of human interactome
BACKGROUND: Comorbidity is the phenomenon of two or more diseases occurring simultaneously not by random chance and presents great challenges to accurate diagnosis and treatment. As an effort toward better understanding the genetic causes of comorbidity, in this work, we have developed a computation...
Autores principales: | Akram, Pakeeza, Liao, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936100/ https://www.ncbi.nlm.nih.gov/pubmed/31888634 http://dx.doi.org/10.1186/s12920-019-0605-5 |
Ejemplares similares
-
Prediction of missing common genes for disease pairs using network based module separation on incomplete human interactome
por: Akram, Pakeeza, et al.
Publicado: (2017) -
There is no human interactome
por: Washburn, Michael P.
Publicado: (2016) -
Computational prediction of the human-microbial oral interactome
por: Coelho, Edgar D, et al.
Publicado: (2014) -
Interactome of human and SARS-CoV-2 proteins to identify human hub proteins associated with comorbidities
por: Ghosh, Nimisha, et al.
Publicado: (2021) -
Learning Geometric Feature Embedding with Transformers for Image Matching
por: Nan, Xiaohu, et al.
Publicado: (2022)