Cargando…

An efficient gene selection method for microarray data based on LASSO and BPSO

BACKGROUND: The main goal of successful gene selection for microarray data is to find compact and predictive gene subsets which could improve the accuracy. Though a large pool of available methods exists, selecting the optimal gene subset for accurate classification is still very challenging for the...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Ying, Ling, Qing-Hua, Han, Fei, Liu, Qing-Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936154/
https://www.ncbi.nlm.nih.gov/pubmed/31888444
http://dx.doi.org/10.1186/s12859-019-3228-0
_version_ 1783483694773698560
author Xiong, Ying
Ling, Qing-Hua
Han, Fei
Liu, Qing-Hua
author_facet Xiong, Ying
Ling, Qing-Hua
Han, Fei
Liu, Qing-Hua
author_sort Xiong, Ying
collection PubMed
description BACKGROUND: The main goal of successful gene selection for microarray data is to find compact and predictive gene subsets which could improve the accuracy. Though a large pool of available methods exists, selecting the optimal gene subset for accurate classification is still very challenging for the diagnosis and treatment of cancer. RESULTS: To obtain the most predictive genes subsets without filtering out critical genes, a gene selection method based on least absolute shrinkage and selection operator (LASSO) and an improved binary particle swarm optimization (BPSO) is proposed in this paper. To avoid overfitting of LASSO, the initial gene pool is divided into clusters based on their structure. LASSO is then employed to select high predictive genes and further calculate the contribution value which indicates the genes’ sensitivity to samples’ classes. With the second-level gene pool established by double filter strategy, the BPSO encoding the contribution information obtained from LASSO is improved to perform gene selection. Moreover, from the perspective of the bit change probability, a new mapping function is defined to guide the updating of the particle to select the more predictive genes in the improved BPSO. CONCLUSIONS: With the compact gene pool obtained by double filter strategies, the improved BPSO could select the optimal gene subsets with high probability. The experimental results on several public microarray data with extreme learning machine verify the effectiveness of the proposed method compared to the relevant methods.
format Online
Article
Text
id pubmed-6936154
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-69361542019-12-31 An efficient gene selection method for microarray data based on LASSO and BPSO Xiong, Ying Ling, Qing-Hua Han, Fei Liu, Qing-Hua BMC Bioinformatics Research BACKGROUND: The main goal of successful gene selection for microarray data is to find compact and predictive gene subsets which could improve the accuracy. Though a large pool of available methods exists, selecting the optimal gene subset for accurate classification is still very challenging for the diagnosis and treatment of cancer. RESULTS: To obtain the most predictive genes subsets without filtering out critical genes, a gene selection method based on least absolute shrinkage and selection operator (LASSO) and an improved binary particle swarm optimization (BPSO) is proposed in this paper. To avoid overfitting of LASSO, the initial gene pool is divided into clusters based on their structure. LASSO is then employed to select high predictive genes and further calculate the contribution value which indicates the genes’ sensitivity to samples’ classes. With the second-level gene pool established by double filter strategy, the BPSO encoding the contribution information obtained from LASSO is improved to perform gene selection. Moreover, from the perspective of the bit change probability, a new mapping function is defined to guide the updating of the particle to select the more predictive genes in the improved BPSO. CONCLUSIONS: With the compact gene pool obtained by double filter strategies, the improved BPSO could select the optimal gene subsets with high probability. The experimental results on several public microarray data with extreme learning machine verify the effectiveness of the proposed method compared to the relevant methods. BioMed Central 2019-12-30 /pmc/articles/PMC6936154/ /pubmed/31888444 http://dx.doi.org/10.1186/s12859-019-3228-0 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Xiong, Ying
Ling, Qing-Hua
Han, Fei
Liu, Qing-Hua
An efficient gene selection method for microarray data based on LASSO and BPSO
title An efficient gene selection method for microarray data based on LASSO and BPSO
title_full An efficient gene selection method for microarray data based on LASSO and BPSO
title_fullStr An efficient gene selection method for microarray data based on LASSO and BPSO
title_full_unstemmed An efficient gene selection method for microarray data based on LASSO and BPSO
title_short An efficient gene selection method for microarray data based on LASSO and BPSO
title_sort efficient gene selection method for microarray data based on lasso and bpso
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936154/
https://www.ncbi.nlm.nih.gov/pubmed/31888444
http://dx.doi.org/10.1186/s12859-019-3228-0
work_keys_str_mv AT xiongying anefficientgeneselectionmethodformicroarraydatabasedonlassoandbpso
AT lingqinghua anefficientgeneselectionmethodformicroarraydatabasedonlassoandbpso
AT hanfei anefficientgeneselectionmethodformicroarraydatabasedonlassoandbpso
AT liuqinghua anefficientgeneselectionmethodformicroarraydatabasedonlassoandbpso
AT xiongying efficientgeneselectionmethodformicroarraydatabasedonlassoandbpso
AT lingqinghua efficientgeneselectionmethodformicroarraydatabasedonlassoandbpso
AT hanfei efficientgeneselectionmethodformicroarraydatabasedonlassoandbpso
AT liuqinghua efficientgeneselectionmethodformicroarraydatabasedonlassoandbpso