Cargando…
Protein sequence information extraction and subcellular localization prediction with gapped k-Mer method
BACKGROUND: Subcellular localization prediction of protein is an important component of bioinformatics, which has great importance for drug design and other applications. A multitude of computational tools for proteins subcellular location have been developed in the recent decades, however, existing...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936157/ https://www.ncbi.nlm.nih.gov/pubmed/31888447 http://dx.doi.org/10.1186/s12859-019-3232-4 |
Sumario: | BACKGROUND: Subcellular localization prediction of protein is an important component of bioinformatics, which has great importance for drug design and other applications. A multitude of computational tools for proteins subcellular location have been developed in the recent decades, however, existing methods differ in the protein sequence representation techniques and classification algorithms adopted. RESULTS: In this paper, we firstly introduce two kinds of protein sequences encoding schemes: dipeptide information with space and Gapped k-mer information. Then, the Gapped k-mer calculation method which is based on quad-tree is also introduced. CONCLUSIONS: >From the prediction results, this method not only reduces the dimension, but also improves the prediction precision of protein subcellular localization. |
---|