Cargando…
Protein sequence information extraction and subcellular localization prediction with gapped k-Mer method
BACKGROUND: Subcellular localization prediction of protein is an important component of bioinformatics, which has great importance for drug design and other applications. A multitude of computational tools for proteins subcellular location have been developed in the recent decades, however, existing...
Autores principales: | Yao, Yu-hua, Lv, Ya-ping, Li, Ling, Xu, Hui-min, Ji, Bin-bin, Chen, Jing, Li, Chun, Liao, Bo, Nan, Xu-ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936157/ https://www.ncbi.nlm.nih.gov/pubmed/31888447 http://dx.doi.org/10.1186/s12859-019-3232-4 |
Ejemplares similares
-
Recombination spot identification Based on gapped k-mers
por: Wang, Rong, et al.
Publicado: (2016) -
Corrigendum: Recombination spot identification Based on gapped k-mers
por: Wang, Rong, et al.
Publicado: (2016) -
Retraction: Recombination spot identification Based on gapped k-mers
por: Wang, Rong, et al.
Publicado: (2018) -
MirLocPredictor: A ConvNet-Based Multi-Label MicroRNA Subcellular Localization Predictor by Incorporating k-Mer Positional Information
por: Asim, Muhammad Nabeel, et al.
Publicado: (2020) -
Enhanced Regulatory Sequence Prediction Using Gapped k-mer Features
por: Ghandi, Mahmoud, et al.
Publicado: (2014)