Cargando…

Perfect k-Colored Matchings and [Formula: see text] -Gonal Tilings

We derive a simple bijection between geometric plane perfect matchings on 2n points in convex position and triangulations on [Formula: see text] points in convex position. We then extend this bijection to monochromatic plane perfect matchings on periodically k-colored vertices and [Formula: see text...

Descripción completa

Detalles Bibliográficos
Autores principales: Aichholzer, Oswin, Andritsch, Lukas, Baur, Karin, Vogtenhuber, Birgit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Japan 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936358/
https://www.ncbi.nlm.nih.gov/pubmed/31929681
http://dx.doi.org/10.1007/s00373-018-1967-8
_version_ 1783483722879729664
author Aichholzer, Oswin
Andritsch, Lukas
Baur, Karin
Vogtenhuber, Birgit
author_facet Aichholzer, Oswin
Andritsch, Lukas
Baur, Karin
Vogtenhuber, Birgit
author_sort Aichholzer, Oswin
collection PubMed
description We derive a simple bijection between geometric plane perfect matchings on 2n points in convex position and triangulations on [Formula: see text] points in convex position. We then extend this bijection to monochromatic plane perfect matchings on periodically k-colored vertices and [Formula: see text] -gonal tilings of convex point sets. These structures are related to a generalization of Temperley–Lieb algebras and our bijections provide explicit one-to-one relations between matchings and tilings. Moreover, for a given element of one class, the corresponding element of the other class can be computed in linear time.
format Online
Article
Text
id pubmed-6936358
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer Japan
record_format MEDLINE/PubMed
spelling pubmed-69363582020-01-09 Perfect k-Colored Matchings and [Formula: see text] -Gonal Tilings Aichholzer, Oswin Andritsch, Lukas Baur, Karin Vogtenhuber, Birgit Graphs Comb Original Paper We derive a simple bijection between geometric plane perfect matchings on 2n points in convex position and triangulations on [Formula: see text] points in convex position. We then extend this bijection to monochromatic plane perfect matchings on periodically k-colored vertices and [Formula: see text] -gonal tilings of convex point sets. These structures are related to a generalization of Temperley–Lieb algebras and our bijections provide explicit one-to-one relations between matchings and tilings. Moreover, for a given element of one class, the corresponding element of the other class can be computed in linear time. Springer Japan 2018-11-10 2018 /pmc/articles/PMC6936358/ /pubmed/31929681 http://dx.doi.org/10.1007/s00373-018-1967-8 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Original Paper
Aichholzer, Oswin
Andritsch, Lukas
Baur, Karin
Vogtenhuber, Birgit
Perfect k-Colored Matchings and [Formula: see text] -Gonal Tilings
title Perfect k-Colored Matchings and [Formula: see text] -Gonal Tilings
title_full Perfect k-Colored Matchings and [Formula: see text] -Gonal Tilings
title_fullStr Perfect k-Colored Matchings and [Formula: see text] -Gonal Tilings
title_full_unstemmed Perfect k-Colored Matchings and [Formula: see text] -Gonal Tilings
title_short Perfect k-Colored Matchings and [Formula: see text] -Gonal Tilings
title_sort perfect k-colored matchings and [formula: see text] -gonal tilings
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936358/
https://www.ncbi.nlm.nih.gov/pubmed/31929681
http://dx.doi.org/10.1007/s00373-018-1967-8
work_keys_str_mv AT aichholzeroswin perfectkcoloredmatchingsandformulaseetextgonaltilings
AT andritschlukas perfectkcoloredmatchingsandformulaseetextgonaltilings
AT baurkarin perfectkcoloredmatchingsandformulaseetextgonaltilings
AT vogtenhuberbirgit perfectkcoloredmatchingsandformulaseetextgonaltilings