Cargando…
Deep learning predicts path-dependent plasticity
Plasticity theory aims at describing the yield loci and work hardening of a material under general deformation states. Most of its complexity arises from the nontrivial dependence of the yield loci on the complete strain history of a material and its microstructure. This motivated 3 ingenious simpli...
Autores principales: | Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., Bessa, M. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936363/ https://www.ncbi.nlm.nih.gov/pubmed/31843918 http://dx.doi.org/10.1073/pnas.1911815116 |
Ejemplares similares
-
Deep learning predicts boiling heat transfer
por: Suh, Youngjoon, et al.
Publicado: (2021) -
A unified energy-optimality criterion predicts human navigation paths and speeds
por: Brown, Geoffrey L., et al.
Publicado: (2021) -
Path-dependent institutions drive alternative stable states in conservation
por: Tekwa, Edward W., et al.
Publicado: (2019) -
Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning
por: Fan, Zhao, et al.
Publicado: (2021) -
Distributed algorithms from arboreal ants for the shortest path problem
por: Garg, Shivam, et al.
Publicado: (2023)