Cargando…

Indicators to distinguish symptom accentuators from symptom producers in individuals with a diagnosed adjustment disorder: A pilot study on inconsistency subtypes using SIMS and MMPI-2-RF

In the context of legal damage evaluations, evaluees may exaggerate or simulate symptoms in an attempt to obtain greater economic compensation. To date, practitioners and researchers have focused on detecting malingering behavior as an exclusively unitary construct. However, we argue that there are...

Descripción completa

Detalles Bibliográficos
Autores principales: Mazza, Cristina, Orrù, Graziella, Burla, Franco, Monaro, Merylin, Ferracuti, Stefano, Colasanti, Marco, Roma, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936836/
https://www.ncbi.nlm.nih.gov/pubmed/31887214
http://dx.doi.org/10.1371/journal.pone.0227113
Descripción
Sumario:In the context of legal damage evaluations, evaluees may exaggerate or simulate symptoms in an attempt to obtain greater economic compensation. To date, practitioners and researchers have focused on detecting malingering behavior as an exclusively unitary construct. However, we argue that there are two types of inconsistent behavior that speak to possible malingering—accentuating (i.e., exaggerating symptoms that are actually experienced) and simulating (i.e., fabricating symptoms entirely)—each with its own unique attributes; thus, it is necessary to distinguish between them. The aim of the present study was to identify objective indicators to differentiate symptom accentuators from symptom producers and consistent participants. We analyzed the Structured Inventory of Malingered Symptomatology scales and the Minnesota Multiphasic Personality Inventory-2 Restructured Form validity scales of 132 individuals with a diagnosed adjustment disorder with mixed anxiety and depressed mood who had undergone assessment for psychiatric/psychological damage. The results indicated that the SIMS Total Score, Neurologic Impairment and Low Intelligence scales and the MMPI-2-RF Infrequent Responses (F-r) and Response Bias (RBS) scales successfully discriminated among symptom accentuators, symptom producers, and consistent participants. Machine learning analysis was used to identify the most efficient parameter for classifying these three groups, recognizing the SIMS Total Score as the best indicator.