Cargando…
In silico definition of new ligninolytic peroxidase sub-classes in fungi and putative relation to fungal life style
Ligninolytic peroxidases are microbial enzymes involved in depolymerisation of lignin, a plant cell wall polymer found in land plants. Among fungi, only Dikarya were found to degrade lignin. The increase of available fungal genomes allows performing an expert annotation of lignin-degrading peroxidas...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937255/ https://www.ncbi.nlm.nih.gov/pubmed/31889110 http://dx.doi.org/10.1038/s41598-019-56774-4 |
Sumario: | Ligninolytic peroxidases are microbial enzymes involved in depolymerisation of lignin, a plant cell wall polymer found in land plants. Among fungi, only Dikarya were found to degrade lignin. The increase of available fungal genomes allows performing an expert annotation of lignin-degrading peroxidase encoding sequences with a particular focus on Class II peroxidases (CII Prx). In addition to the previously described LiP, MnP and VP classes, based on sequence similarity, six new sub-classes have been defined: three found in plant pathogen ascomycetes and three in basidiomycetes. The presence of CII Prxs could be related to fungal life style. Typically, necrotrophic or hemibiotrophic fungi, either ascomycetes or basidiomycetes, possess CII Prxs while symbiotic, endophytic or biotrophic fungi do not. CII Prxs from ascomycetes are rarely subjected to duplications unlike those from basidiomycetes, which can form large recent duplicated families. Even if these CII Prxs classes form two well distinct clusters with divergent gene structures (intron numbers and positions), they share the same key catalytic residues suggesting that they evolved independently from similar ancestral sequences with few or no introns. The lack of CII Prxs encoding sequences in early diverging fungi, together with the absence of duplicated class I peroxidase (CcP) in fungi containing CII Prxs, suggests the potential emergence of an ancestral CII Prx sequence from the duplicated CcP after the separation between ascomycetes and basidiomycetes. As some ascomycetes and basidiomycetes did not possess CII Prx, late gene loss could have occurred. |
---|