Cargando…

Properties of orb weaving spider glycoprotein glue change during Argiope trifasciata web construction

An orb web’s prey capture thread relies on its glue droplets to retain insects until a spider can subdue them. Each droplet’s viscoelastic glycoprotein adhesive core extends to dissipate the forces of prey struggle as it transfers force to stiffer, support line flagelliform fibers. In large orb webs...

Descripción completa

Detalles Bibliográficos
Autores principales: Opell, Brent D., Stellwagen, Sarah D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937294/
https://www.ncbi.nlm.nih.gov/pubmed/31889090
http://dx.doi.org/10.1038/s41598-019-56707-1
Descripción
Sumario:An orb web’s prey capture thread relies on its glue droplets to retain insects until a spider can subdue them. Each droplet’s viscoelastic glycoprotein adhesive core extends to dissipate the forces of prey struggle as it transfers force to stiffer, support line flagelliform fibers. In large orb webs, switchback capture thread turns are placed at the bottom of the web before a continuous capture spiral progresses from the web’s periphery to its interior. To determine if the properties of capture thread droplets change during web spinning, we characterized droplet and glycoprotein volumes and material properties from the bottom, top, middle, and inner regions of webs. Both droplet and glycoprotein volume decreased during web construction, but there was a progressive increase in the glycoprotein’s Young’s modulus and toughness. Increases in the percentage of droplet aqueous material indicated that these increases in material properties are not due to reduced glycoprotein viscosity resulting from lower droplet hygroscopicity. Instead, they may result from changes in aqueous layer compounds that condition the glycoprotein. A 6-fold difference in glycoprotein toughness and a 70-fold difference in Young’s modulus across a web documents the phenotypic plasticity of this natural adhesive and its potential to inspire new materials.