Cargando…
Mathematical modeling and computer simulation of the three-dimensional pattern formation of honeycombs
We present a mathematical model, a numerical scheme, and computer simulations of the three-dimensional pattern formation of a honeycomb structure by using the immersed boundary method. In our model, we assume that initially the honeycomb cells have a hollow hemisphere mounted by a hollow circular cy...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937337/ https://www.ncbi.nlm.nih.gov/pubmed/31889154 http://dx.doi.org/10.1038/s41598-019-56942-6 |
Sumario: | We present a mathematical model, a numerical scheme, and computer simulations of the three-dimensional pattern formation of a honeycomb structure by using the immersed boundary method. In our model, we assume that initially the honeycomb cells have a hollow hemisphere mounted by a hollow circular cylinder shape at their birth and there is force acting upon the entire side of the cell. The net force from the individual cells is a key factor in their transformation from a hollow hemisphere mounted by a hollow circular cylinder shape to a rounded rhombohedral surfaces mounted by a hexagonal cylinder shape. Numerical simulations of the proposed mathematical model equation produce the rounded rhombohedral surfaces mounted by a hexagonal cylinder patterns observed in honeybee colonies. |
---|