Cargando…
Monitoring of iron status in patients with heart failure
The 2016 ESC/HFA heart failure (HF) guidelines emphasize the importance of identifying and treating iron deficiency (ID) in patients with HF. Iron deficiency can occur in half or more of HF sufferers, depending on age and the phase of the disease. Iron deficiency can be a cause of anaemia, but it is...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937508/ https://www.ncbi.nlm.nih.gov/pubmed/31908613 http://dx.doi.org/10.1093/eurheartj/suz231 |
Sumario: | The 2016 ESC/HFA heart failure (HF) guidelines emphasize the importance of identifying and treating iron deficiency (ID) in patients with HF. Iron deficiency can occur in half or more of HF sufferers, depending on age and the phase of the disease. Iron deficiency can be a cause of anaemia, but it is also common even without anaemia, meaning that ID is a separate entity, which should be screened for within the HF population. Although assessment of iron stores in bone marrow samples is the most accurate method to investigate iron status, it is not practical in most HF patients. Levels of circulating iron biomarkers are an easily available alternative; especially, ferritin and transferrin saturation (Tsat). In patients with HF serum ferritin level <100 µg/L (regardless of Tsat value) or between 100 and 299 µg/L with Tsat <20% are considered as recommended criteria for the diagnosis of ID, criteria which have been used in the clinical trials in HF that have led to a recommendation to treat ID with intravenous iron. We discuss the optimal measures of iron biomarkers in patients with HF in order to screen and monitor iron status and introduce some novel ways to assess iron status. |
---|