Cargando…

Automated classification of dense calcium tissues in gray-scale intravascular ultrasound images using a deep belief network

BACKGROUND: IVUS is widely used to quantitatively assess coronary artery disease. The purpose of this study was to automatically characterize dense calcium (DC) tissue in the gray scale intravascular ultrasound (IVUS) images using the image textural features. METHODS: A total of 316 Gy-scale IVUS an...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Juhwan, Hwang, Yoo Na, Kim, Ga Young, Kwon, Ji Yean, Kim, Sung Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937730/
https://www.ncbi.nlm.nih.gov/pubmed/31888535
http://dx.doi.org/10.1186/s12880-019-0403-8
Descripción
Sumario:BACKGROUND: IVUS is widely used to quantitatively assess coronary artery disease. The purpose of this study was to automatically characterize dense calcium (DC) tissue in the gray scale intravascular ultrasound (IVUS) images using the image textural features. METHODS: A total of 316 Gy-scale IVUS and corresponding virtual histology images from 26 patients with acute coronary syndrome who underwent IVUS along with X-ray angiography between October 2009 to September 2014 were retrospectively acquired and analyzed. One expert performed all procedures and assessed their IVUS scans. After image acquisition, the DC candidate and corresponding acoustic shadow regions were automatically determined. Then, nine image-base feature groups were extracted from the DC candidates. In order to reduce the dimensionalities, principal component analysis (PCA) was performed, and selected feature sets were utilized as an input for a deep belief network. Classification results were validated using 10-fold cross validation. RESULTS: The dimensionality of the feature map was efficiently reduced by 50% (from 66 to 33) without any performance decrease using PCA method. Sensitivity, specificity, and accuracy of the proposed method were 92.8 ± 0.1%, 85.1 ± 0.1%, and 88.4 ± 0.1%, respectively (p < 0.05). We found that the window size could largely influence the characterization results, and selected the 5 × 5 size as the best condition. We also validated the performance superiority of the proposed method with traditional classification methods. CONCLUSIONS: These experimental results suggest that the proposed method has significant clinical applicability for IVUS-based cardiovascular diagnosis.