Cargando…
Clinical risk prediction with random forests for survival, longitudinal, and multivariate (RF-SLAM) data analysis
BACKGROUND: Clinical research and medical practice can be advanced through the prediction of an individual’s health state, trajectory, and responses to treatments. However, the majority of current clinical risk prediction models are based on regression approaches or machine learning algorithms that...
Autores principales: | Wongvibulsin, Shannon, Wu, Katherine C., Zeger, Scott L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937754/ https://www.ncbi.nlm.nih.gov/pubmed/31888507 http://dx.doi.org/10.1186/s12874-019-0863-0 |
Ejemplares similares
-
Multivariate permutation test to compare survival curves for matched data
por: Galimberti, Stefania, et al.
Publicado: (2013) -
A multivariable approach for risk markers from pooled molecular data with only partial overlap
por: Stelzer, Anne-Sophie, et al.
Publicado: (2019) -
Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves
por: Guyot, Patricia, et al.
Publicado: (2012) -
Multivariable flexible modelling for estimating complete, smoothed life tables for sub-national populations
por: Rachet, Bernard, et al.
Publicado: (2015) -
The Transeurope Footrace Project: longitudinal data acquisition in a cluster randomized mobile MRI observational cohort study on 44 endurance runners at a 64-stage 4,486km transcontinental ultramarathon
por: Schütz, Uwe HW, et al.
Publicado: (2012)