Cargando…
DeepFHR: intelligent prediction of fetal Acidemia using fetal heart rate signals based on convolutional neural network
BACKGROUND: Fetal heart rate (FHR) monitoring is a screening tool used by obstetricians to evaluate the fetal state. Because of the complexity and non-linearity, a visual interpretation of FHR signals using common guidelines usually results in significant subjective inter-observer and intra-observer...
Autores principales: | Zhao, Zhidong, Deng, Yanjun, Zhang, Yang, Zhang, Yefei, Zhang, Xiaohong, Shao, Lihuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937790/ https://www.ncbi.nlm.nih.gov/pubmed/31888592 http://dx.doi.org/10.1186/s12911-019-1007-5 |
Ejemplares similares
-
A Comprehensive Feature Analysis of the Fetal Heart Rate Signal for the Intelligent Assessment of Fetal State
por: Zhao, Zhidong, et al.
Publicado: (2018) -
Computer-Aided Diagnosis System of Fetal Hypoxia Incorporating Recurrence Plot With Convolutional Neural Network
por: Zhao, Zhidong, et al.
Publicado: (2019) -
Investigating pH based evaluation of fetal heart rate (FHR) recordings
por: Georgoulas, George, et al.
Publicado: (2017) -
Comparison of the predictive ability for perinatal acidemia in neonates between the NICHD 3-tier FHR system combined with clinical risk factors and the fetal reserve index
por: Pruksanusak, Ninlapa, et al.
Publicado: (2022) -
Is Abdominal Fetal Electrocardiography an Alternative to Doppler Ultrasound for FHR Variability Evaluation?
por: Jezewski, Janusz, et al.
Publicado: (2017)