Cargando…
Rule-based and machine learning algorithms identify patients with systemic sclerosis accurately in the electronic health record
BACKGROUND: Systemic sclerosis (SSc) is a rare disease with studies limited by small sample sizes. Electronic health records (EHRs) represent a powerful tool to study patients with rare diseases such as SSc, but validated methods are needed. We developed and validated EHR-based algorithms that incor...
Autores principales: | Jamian, Lia, Wheless, Lee, Crofford, Leslie J., Barnado, April |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937803/ https://www.ncbi.nlm.nih.gov/pubmed/31888720 http://dx.doi.org/10.1186/s13075-019-2092-7 |
Ejemplares similares
-
Phenome-wide association study identifies marked increased in burden of comorbidities in African Americans with systemic lupus erythematosus
por: Barnado, April, et al.
Publicado: (2018) -
Machine Learning Prediction of Hypoglycemia and Hyperglycemia From Electronic Health Records: Algorithm Development and Validation
por: Witte, Harald, et al.
Publicado: (2022) -
Pregnancy outcomes among African–American patients with systemic lupus erythematosus compared with controls
por: Barnado, April, et al.
Publicado: (2014) -
Systemic Lupus Erythematosus Delivery Outcomes Are Unchanged Across Three Decades
por: Barnado, April, et al.
Publicado: (2022) -
Machine learning algorithms accurately identify free-living marine nematode species
por: Brito de Jesus, Simone, et al.
Publicado: (2023)