Cargando…
Benchmarking the PEPOP methods for mimicking discontinuous epitopes
BACKGROUND: Computational methods provide approaches to identify epitopes in protein Ags to help characterizing potential biomarkers identified by high-throughput genomic or proteomic experiments. PEPOP version 1.0 was developed as an antigenic or immunogenic peptide prediction tool. We have now imp...
Autores principales: | Demolombe, Vincent, de Brevern, Alexandre G., Molina, Franck, Lavigne, Géraldine, Granier, Claude, Moreau, Violaine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6937815/ https://www.ncbi.nlm.nih.gov/pubmed/31888437 http://dx.doi.org/10.1186/s12859-019-3189-3 |
Ejemplares similares
-
PEPOP 2.0: new approaches to mimic non-continuous epitopes
por: Demolombe, Vincent, et al.
Publicado: (2019) -
PEPOP: Computational design of immunogenic peptides
por: Moreau, Violaine, et al.
Publicado: (2008) -
Benchmarking electrical methods for rapid estimation of root biomass
por: Postic, François, et al.
Publicado: (2016) -
Benchmark datasets of immune receptor-epitope structural complexes
por: Mahajan, Swapnil, et al.
Publicado: (2019) -
Deep learning methods improve linear B-cell epitope prediction
por: Liu, Tao, et al.
Publicado: (2020)