Cargando…

Arf-GEF localization and function at myosin-rich adherens junctions via coiled-coil heterodimerization with an adaptor protein

Tissue dynamics require regulated interactions between adherens junctions and cytoskeletal networks. For example, myosin-rich adherens junctions recruit the cytohesin Arf-GEF Steppke, which down-regulates junctional tension and facilitates tissue stretching. We dissected this recruitment mechanism w...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Shiyu, West, Junior J., Yu, Cao Guo, Harris, Tony J. C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938242/
https://www.ncbi.nlm.nih.gov/pubmed/31693432
http://dx.doi.org/10.1091/mbc.E19-10-0566
Descripción
Sumario:Tissue dynamics require regulated interactions between adherens junctions and cytoskeletal networks. For example, myosin-rich adherens junctions recruit the cytohesin Arf-GEF Steppke, which down-regulates junctional tension and facilitates tissue stretching. We dissected this recruitment mechanism with structure–function and other analyses of Steppke and Stepping stone, an implicated adaptor protein. During Drosophila dorsal closure, Steppke’s coiled-coil domain was necessary and sufficient for junctional recruitment. Purified coiled-coil domains of Steppke and Stepping stone heterodimerized through a hydrophobic surface of the Steppke domain. This mapped surface was required for Steppke’s junctional localization and tissue regulation. Stepping stone colocalized with Steppke at junctions, and was required for junctional Steppke localization and proper tissue stretching. A second conserved region of Stepping stone was necessary and largely sufficient for junctional localization. Remarkably, this region could substitute for the Steppke coiled-coil domain for junction localization and regulation, suggesting the main role of the Steppke coiled-coil domain is linkage to the junctional targeting region of Stepping stone. Thus, coiled-coil heterodimerization with Stepping stone normally recruits Step to junctions. Intriguingly, Stepping stone’s junctional localization also seems partly dependent on Steppke.