Cargando…

Obtaining dual-energy computed tomography (CT) information from a single-energy CT image for quantitative imaging analysis of living subjects by using deep learning

Computed tomographic (CT) is a fundamental imaging modality to generate cross-sectional views of internal anatomy in a living subject or interrogate material composition of an object, and it has been routinely used in clinical applications and nondestructive testing. In a standard CT image, pixels h...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Wei, Lv, Tianling, Lee, Rena, Chen, Yang, Xing, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938283/
https://www.ncbi.nlm.nih.gov/pubmed/31797593
Descripción
Sumario:Computed tomographic (CT) is a fundamental imaging modality to generate cross-sectional views of internal anatomy in a living subject or interrogate material composition of an object, and it has been routinely used in clinical applications and nondestructive testing. In a standard CT image, pixels having the same Hounsfield Units (HU) can correspond to different materials, and it is therefore challenging to differentiate and quantify materials. Dual-energy CT (DECT) is desirable to differentiate multiple materials, but the costly DECT scanners are not widely available as single-energy CT (SECT) scanners. Recent advancement in deep learning provides an enabling tool to map images between different modalities with incorporated prior knowledge. Here we develop a deep learning approach to perform DECT imaging by using the standard SECT data. The end point of the approach is a model capable of providing the high-energy CT image for a given input low-energy CT image. The feasibility of the deep learning-based DECT imaging method using a SECT data is demonstrated using contrast-enhanced DECT images and evaluated using clinical relevant indexes. This work opens new opportunities for numerous DECT clinical applications with a standard SECT data and may enable significantly simplified hardware design, scanning dose and image cost reduction for future DECT systems.